Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203251

RESUMO

Proximal tubular epithelial cells (PTEC) are constantly exposed to potentially toxic metabolites and xenobiotics. The regenerative potential of the kidney enables the replacement of damaged cells either via the differentiation of stem cells or the re-acquisition of proliferative properties of the PTEC. Nevertheless, it is known that renal function declines, suggesting that the deteriorated cells are not replaced by fully functional cells. To understand the possible causes of this loss of kidney cell function, it is crucial to understand the role of toxins during the regeneration process. Therefore, we investigated the sensitivity and function of human induced pluripotent stem cells (hiPSC), hiPSC differentiating, and hiPSC differentiated into proximal tubular epithelial-like cells (PTELC) to known nephrotoxins. hiPSC were differentiated into PTELC, which exhibited similar morphology to PTEC, expressed prototypical PTEC markers, and were able to undergo albumin endocytosis. When treated with two nephrotoxins, hiPSC and differentiating hiPSC were more sensitive to cisplatin than differentiated PTELC, whereas all stages were equally sensitive to cyclosporin A. Both toxins also had an inhibitory effect on albumin uptake. Our results suggest a high sensitivity of differentiating cells towards toxins, which could have an unfavorable effect on regenerative processes. To study this, our model of hiPSC differentiating into PTELC appears suitable.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Rim , Albuminas , Células Epiteliais
2.
Chem Res Toxicol ; 34(2): 396-411, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33185102

RESUMO

Disturbance of the thyroid hormone homeostasis has been associated with adverse health effects such as goiters and impaired mental development in humans and thyroid tumors in rats. In vitro and in silico methods for predicting the effects of small molecules on thyroid hormone homeostasis are currently being explored as alternatives to animal experiments, but are still in an early stage of development. The aim of this work was the development of a battery of in silico models for a set of targets involved in molecular initiating events of thyroid hormone homeostasis: deiodinases 1, 2, and 3, thyroid peroxidase (TPO), thyroid hormone receptor (TR), sodium/iodide symporter, thyrotropin-releasing hormone receptor, and thyroid-stimulating hormone receptor. The training data sets were compiled from the ToxCast database and related scientific literature. Classical statistical approaches as well as several machine learning methods (including random forest, support vector machine, and neural networks) were explored in combination with three data balancing techniques. The models were trained on molecular descriptors and fingerprints and evaluated on holdout data. Furthermore, multi-task neural networks combining several end points were investigated as a possible way to improve the performance of models for which the experimental data available for model training are limited. Classifiers for TPO and TR performed particularly well, with F1 scores of 0.83 and 0.81 on the holdout data set, respectively. Models for the other studied targets yielded F1 scores of up to 0.77. An in-depth analysis of the reliability of predictions was performed for the most relevant models. All data sets used in this work for model development and validation are available in the Supporting Information.


Assuntos
Homeostase/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Hormônios Tireóideos/metabolismo , Animais , Bases de Dados Factuais , Humanos , Aprendizado de Máquina , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
3.
Chem Biol Interact ; 351: 109709, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34662569

RESUMO

The selenocysteine-containing enzyme class deiodinases (DIO) consists of three isoforms. DIOs play a role in regulation of thyroid hormone (TH) signaling through the removal of iodide from TH leading to TH that interact with the hypothalamic-pituitary-thyroid (HPT) axis with differing potency. Some gold-containing organic substances are known to inhibit many selenoenzymes, including DIOs. It is, however, unclear whether the Au-containing substances or the Au ions are causing the inhibition. In this study, five organic and inorganic gold substances as well as three gold nanoparticles (AuNPs) were tested for their potential to inhibit DIO1. The enzyme activity was tested using human liver microsomes as an enzyme source and reverse T3 as a substrate; iodide release was measured by the Sandell-Kolthoff method. The three organic gold substances aurothioglucose, auranofin and sodium aurothiomalate inhibited DIO1 with IC50 between 0.38 and 0.75 µM while their structural analogues lacking the gold ion did not. Likewise, the two tested gold salts, Au(I) and Au(III) chloride, showed a concentration-dependent inhibition of the DIO1 with IC50 values of 0.95 and 0.57 µM. Further, AuNPs of different sizes (100, 30 and 5 nm diameter) were tested with only the 5 nm AuNPs leading to inhibition with an IC50 of 8 × 1014 AuNP/L. This inhibition was not caused by the Au ions released by the AuNP into the incubation media. The exact mechanism of inhibition of DIO1 by 5 nm AuNPs should be further examined. In conclusion, the microsomal DIO1 assay demonstrated the inhibition of DIO1 by gold ions originating from different gold-containing substances, but not by Au released from AuNPs; rather DIO1 is inhibited by 5 nm, but not larger, AuNPs.


Assuntos
Inibidores Enzimáticos/farmacologia , Ouro/farmacologia , Iodeto Peroxidase/antagonistas & inibidores , Nanopartículas Metálicas/química , Inibidores Enzimáticos/química , Ouro/química , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA