Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 321(2): C247-C256, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34106785

RESUMO

The islets of Langerhans of the pancreas are the primary endocrine organ responsible for regulating whole body glucose homeostasis. The use of isolated primary islets for research development and training requires organ resection, careful digestion, and isolation of the islets from nonendocrine tissue. This process is time consuming, expensive, and requires substantial expertise. For these reasons, we sought to develop a more rapidly obtainable and consistent model system with characteristic islet morphology and function that could be employed to train personnel and better inform experiments prior to using isolated rodent and human islets. Immortalized ß cell lines reflect several aspects of primary ß cells, but cell propagation in monolayer cell culture limits their usefulness in several areas of research, which depend on islet morphology and/or functional assessment. In this manuscript, we describe the propagation and characterization of insulinoma pseudo-islets (IPIs) from a rat insulinoma cell line INS832/3. IPIs were generated with an average diameter of 200 µm, consistent with general islet morphology. The rates of oxygen consumption and mitochondrial oxidation-reduction changes in response to glucose and metabolic modulators were similar to isolated rat islets. In addition, the dynamic insulin secretory patterns of IPIs were similar to primary rat islets. Thus, INS832/3-derived IPIs provide a valuable and convenient model for accelerating islet and diabetes research.


Assuntos
Diabetes Mellitus/metabolismo , Insulinoma/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Animais , Linhagem Celular , Glucose/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Consumo de Oxigênio/fisiologia
2.
Am J Physiol Cell Physiol ; 316(1): C48-C56, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404557

RESUMO

Linking two pharmacophores that bind different cell surface receptors into a single molecule can enhance cell-targeting specificity to cells that express the complementary receptor pair. In this report, we developed and tested a synthetic multivalent ligand consisting of glucagon-like peptide-1 (GLP-1) linked to glibenclamide (Glb) (GLP-1/Glb) for signaling efficacy in ß-cells. Expression of receptors for these ligands, as a combination, is relatively specific to the ß-cell in the pancreas. The multivalent GLP-1/Glb increased both intracellular cAMP and Ca2+, although Ca2+ responses were significantly depressed compared with the monomeric Glb. Moreover, GLP-1/Glb increased glucose-stimulated insulin secretion in a dose-dependent manner. However, unlike the combined monomers, GLP-1/Glb did not augment insulin secretion at nonstimulatory glucose concentrations in INS 832/13 ß-cells or human islets of Langerhans. These data suggest that linking two binding elements, such as GLP-1 and Glb, into a single bivalent ligand can provide a unique functional agent targeted to ß-cells.


Assuntos
Linfócitos B/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Receptores de Glucagon/metabolismo , Receptores de Sulfonilureias/metabolismo , Linfócitos B/efeitos dos fármacos , Feminino , Glibureto/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Pessoa de Meia-Idade , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia
3.
J Mol Cell Cardiol ; 114: 199-210, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174767

RESUMO

Sorcin, a penta-EF hand Ca2+-binding protein expressed in cardiomyocytes, is known to interact with ryanodine receptors and other Ca2+ regulatory proteins. To investigate sorcin's influence on cardiac excitation-contraction coupling and its role in the development of cardiac malfunctions, we generated a sorcin knockout (KO) mouse model. Sorcin KO mice presented ventricular arrhythmia and sudden death when challenged by acute stress induced by isoproterenol plus caffeine. Chronic stress, which was induced by transverse aortic constriction, significantly decreased the survival rate of sorcin KO mice. Under isoproterenol stimulation, spontaneous Ca2+ release events were frequently observed in sorcin KO cardiomyocytes. Sorcin KO hearts of adult, but not young mice developed overexpression of L-type Ca2+ channel and Na+-Ca2+ exchanger, which enhanced ICa and INCX. Consequently, spontaneous Ca2+ release events in sorcin KO cardiomyocytes were more likely to induce arrhythmogenic delayed afterdepolarizations. Our study demonstrates sorcin deficiency may trigger cardiac ventricular arrhythmias due to Ca2+ disturbances, and evidences the critical role of sorcin in maintaining Ca2+ homeostasis, especially during the adrenergic response of the heart.


Assuntos
Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Deleção de Genes , Ventrículos do Coração/patologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Morte Súbita Cardíaca , Eletrocardiografia , Ventrículos do Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Camundongos Knockout , Miócitos Cardíacos/patologia , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Estresse Fisiológico/efeitos dos fármacos
4.
Xenotransplantation ; 25(6): e12432, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30052287

RESUMO

BACKGROUND: There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted. METHODS: Neonatal porcine islets (NPI; 1-3 days), juvenile porcine islets (JPI; 18-21 days), and adult porcine islets (API; 2+ years) were compared in vitro, including assessments of oxygen consumption rate, membrane integrity determined by FDA/PI staining, ß-cell proliferation, dynamic glucose-stimulated insulin secretion, and RNA sequencing. RESULTS: Oxygen consumption rate normalized to DNA was not significantly different between ages. Membrane integrity was age dependent, and API had the highest percentage of intact cells. API also had the highest glucose-stimulated insulin secretion response during a dynamic insulin secretion assay and had 50-fold higher total insulin content compared to NPI and JPI. NPI and JPI had similar glucose responsiveness, ß-cell percentage, and ß-cell proliferation rate. Transcriptome analysis was consistent with physiological assessments. API transcriptomes were enriched for cellular metabolic and insulin secretory pathways, while NPI exhibited higher expression of genes associated with proliferation. CONCLUSIONS: The oxygen demand, membrane integrity, ß-cell function and proliferation, and transcriptomes of islets from API, JPI, and NPI provide a comprehensive physiological comparison for future studies. These assessments will inform the optimal application of each age of porcine islet to expand the availability of islet transplantation.


Assuntos
Sobrevivência de Enxerto/imunologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Animais Recém-Nascidos , Diabetes Mellitus Experimental/terapia , Rejeição de Enxerto/imunologia , Células Secretoras de Insulina/imunologia , Transplante das Ilhotas Pancreáticas/métodos , Pâncreas/imunologia , Pâncreas/metabolismo , Suínos , Transcriptoma/imunologia , Transplante Heterólogo/métodos
5.
Org Biomol Chem ; 13(47): 11507-17, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26461460

RESUMO

Molecules bearing one, two, three, or four copies of the tetrapeptide His-dPhe-Arg-Trp were attached to scaffolds based on ethylene glycol, glycerol, and d-mannitol by means of the copper-assisted azide-alkyne cyclization. The abilities of these compounds to block binding of a probe at the melanocortin 4 receptor were evaluated using a competitive binding assay. All of the multivalent molecules studied exhibited 30- to 40-fold higher apparent affinites when compared to a monovalent control. These results are consistent with divalent binding to receptor dimers. No evidence for tri- or tetravalent binding was obtained. Differences in the interligand spacing required for divalent binding, as opposed to tri- or tetravalent binding, may be responsible for these results.


Assuntos
Oligopeptídeos/química , Oligopeptídeos/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Alcinos/química , Sequência de Aminoácidos , Azidas/química , Ligação Competitiva , Ciclização , Etilenoglicol/química , Etilenoglicol/metabolismo , Glicerol/química , Glicerol/metabolismo , Células HEK293 , Humanos , Manitol/química , Manitol/metabolismo , Multimerização Proteica , Relação Estrutura-Atividade
6.
Org Biomol Chem ; 13(6): 1778-91, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25502141

RESUMO

Melanocortin receptors can be used as biomarkers to detect and possibly treat melanoma. To these ends, molecules bearing one, two, or three copies of the weakly binding ligand MSH(4) were attached to scaffolds based on phloroglucinol, tripropargylamine, and 1,4,7-triazacyclononane by means of the copper-assisted azide-alkyne cyclization. This synthetic design allows rapid assembly of multivalent molecules. The bioactivities of these compounds were evaluated using a competitive binding assay that employed human embryonic kidney cells engineered to overexpress the melanocortin 4 receptor. The divalent molecules exhibited 10- to 30-fold higher levels of inhibition when compared to the corresponding monovalent molecules, consistent with divalent binding. The trivalent molecules were only statistically (∼2-fold) better than the divalent molecules, still consistent with divalent binding but inconsistent with trivalent binding. Possible reasons for these behaviors and planned refinements of the multivalent constructs targeting melanocortin receptors based on these scaffolds are discussed.


Assuntos
Compostos Heterocíclicos/farmacologia , Pargilina/análogos & derivados , Floroglucinol/farmacologia , Propilaminas/farmacologia , Receptores de Melanocortina/antagonistas & inibidores , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Pargilina/química , Pargilina/farmacologia , Floroglucinol/química , Propilaminas/química , Receptores de Melanocortina/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Med Chem ; 23(8): 1841-8, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769518

RESUMO

The synthesis, characterization, and use of Eu-DTPA-PEGO-Trp-Nle-Asp-Phe-NH2 (Eu-DTPA-PEGO-CCK4), a luminescent probe targeted to cholecystokinin 2 receptor (CCK2R, aka CCKBR), are described. The probe was prepared by solid phase synthesis. A Kd value of 17±2nM was determined by means of saturation binding assays using HEK-293 cells that overexpress CCK2R. The probe was then used in competitive binding assays against Ac-CCK4 and three new trivalent CCK4 compounds. Repeatable and reproducible binding assay results were obtained. Given its ease of synthesis, purification, receptor binding properties, and utility in competitive binding assays, Eu-DTPA-PEGO-CCK4 could become a standard tool for high-throughput screening of compounds in development targeted to cholecystokinin receptors.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Receptor de Colecistocinina B/metabolismo , Ligação Competitiva , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Espectrometria de Fluorescência
8.
Tetrahedron Lett ; 56(23): 3060-3065, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26120211

RESUMO

Oligomers incorporating the tetrapeptide MSH4, the minimum active sequence of melanocyte stimulating hormone, were synthesized by an A2 + B2 strategy involving microwave-assisted copper-catalyzed azide-alkyne cycloaddition. A2 contained an MSH4 core while B2 contained a (Pro-Gly)3 spacer. Soluble mixtures containing compounds with up to eight MSH4 units were obtained from oligomerizations at high monomer concentrations. The avidities of several oligomeric mixtures were evaluated by means of a competitive binding assay using HEK293 cells engineered to overexpress the melanocortin 4 receptor. When based on total MSH4 concentrations, avidities were only minimally enhanced compared with a monovalent control. The lack of variation in the effect of ligands on probe binding is consistent with high off rates for MSH4 in both monovalent and oligomeric constructs relative to that of the competing probe.

9.
Chembiochem ; 15(1): 135-45, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24259278

RESUMO

G protein-coupled receptor (GPCR) cell signalling cascades are initiated upon binding of a specific agonist ligand to its cell surface receptor. Linking multiple heterologous ligands that simultaneously bind and potentially link different receptors on the cell surface is a unique approach to modulate cell responses. Moreover, if the target receptors are selected based on analysis of cell-specific expression of a receptor combination, then the linked binding elements might provide enhanced specificity of targeting the cell type of interest, that is, only to cells that express the complementary receptors. Two receptors whose expression is relatively specific (in combination) to insulin-secreting pancreatic ß-cells are the sulfonylurea-1 (SUR1) and the glucagon-like peptide-1 (GLP-1) receptors. A heterobivalent ligand was assembled from the active fragment of GLP-1 (7-36 GLP-1) and glibenclamide, a small organic ligand for SUR1. The synthetic construct was labelled with Cy5 or europium chelated in DTPA to evaluate binding to ß-cells, by using fluorescence microscopy or time-resolved saturation and competition binding assays, respectively. Once the ligand binds to ß-cells, it is rapidly capped and presumably removed from the cell surface by endocytosis. The bivalent ligand had an affinity approximately fivefold higher than monomeric europium-labelled GLP-1, likely a result of cooperative binding to the complementary receptors on the ßTC3 cells. The high-affinity binding was lost in the presence of either unlabelled monomer, thus demonstrating that interaction with both receptors is required for the enhanced binding at low concentrations. Importantly, bivalent enhancement was accomplished in a cell system with physiological levels of expression of the complementary receptors, thus indicating that this approach might be applicable for ß-cell targeting in vivo.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/química , Glibureto/farmacologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Células Cultivadas , Corantes Fluorescentes/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glibureto/química , Glibureto/metabolismo , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Células Secretoras de Insulina/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Ratos , Receptores de Glucagon/metabolismo , Relação Estrutura-Atividade , Receptores de Sulfonilureias/metabolismo
10.
Biochemistry ; 52(19): 3332-45, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23594148

RESUMO

As the endoplasmic reticulum (ER) is the compartment where disulfide bridges in secreted and cell surface proteins are formed, the disturbance of its redox state has profound consequences, yet regulation of ER redox potential remains poorly understood. To monitor the ER redox state in live cells, several fluorescence-based sensors have been developed. However, these sensors have yielded results that are inconsistent with each other and with earlier non-fluorescence-based studies. One particular green fluorescent protein (GFP)-based redox sensor, roGFP1-iL, could detect oxidizing changes in the ER despite having a reduction potential significantly lower than that previously reported for the ER. We have confirmed these observations and determined the mechanisms by which roGFP1-iL detects oxidizing changes. First, glutathione mediates the formation of disulfide-bonded roGFP1-iL dimers with an intermediate excitation fluorescence spectrum resembling a mixture of oxidized and reduced monomers. Second, glutathione facilitates dimerization of roGFP1-iL, which shifted the equilibrium from oxidized monomers to dimers, thereby increasing the molecule's reduction potential compared with that of a dithiol redox buffer. We conclude that the glutathione redox couple in the ER significantly increased the reduction potential of roGFP1-iL in vivo by facilitating its dimerization while preserving its ratiometric nature, which makes it suitable for monitoring oxidizing and reducing changes in the ER with a high degree of reliability in real time. The ability of roGFP1-iL to detect both oxidizing and reducing changes in ER and its dynamic response in glutathione redox buffer between approximately -190 and -130 mV in vitro suggests a range of ER redox potentials consistent with those determined by earlier approaches that did not involve fluorescent sensors.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células 3T3-L1 , Animais , Retículo Endoplasmático/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Oxirredução , Engenharia de Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Espectrometria de Fluorescência
11.
Bioorg Med Chem ; 21(17): 5029-38, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23890524

RESUMO

Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these MSH(4) constructs than was previously reported.


Assuntos
Corantes Fluorescentes/síntese química , Receptores de Melanocortina/metabolismo , Ligação Competitiva , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Ácido Pentético/química , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptor de Colecistocinina B/química , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/metabolismo , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina/química , Técnicas de Síntese em Fase Sólida
12.
Anesthesiology ; 115(6): 1192-200, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22020141

RESUMO

INTRODUCTION: A pharmacogenomic approach was used to further localize the genetic region responsible for previously observed enhanced cardiovascular sensitivity to propofol in Dahl Salt Sensitive (SS) versus control Brown Norway (BN) rats. METHODS: Propofol infusion levels that decreased blood pressure by 50% were measured in BN.13(SS) rats (substitution of SS chromosome 13 into BN) and in five congenic (partial substitution) strains of SS.13(BN). The effect of superfused 2,6 diisopropylphenol on small mesenteric arterial vascular smooth muscle transmembrane potential was measured in congenic strains before and during superfusion with Rp-adenosine-3',5'-cyclic monophosphorothioate and 2.5 µM (Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate, inhibitors of protein kinase A and G, respectively. The genetic locus and potential role of the renin gene in mediating vascular smooth muscle sensitivity to propofol were determined in three selected subcongenic SS.BN¹³ strains. RESULTS: A 30-32% smaller propofol infusion rate reduced blood pressure by 50% in BN.13(SS) compared with BN and the SS.13(BN) congenic containing an 80 BN gene substitution. Compared with the 80 BN gene-containing SS.13(BN) congenic, SS exhibited greater protein kinase A dependent vascular smooth muscle hyperpolarization in response to propofol. Using subcongenics, the increased propofol-induced cardiovascular sensitivity and hyperpolarization was further localized to an eight-gene region (containing the BN renin gene). Blockade of angiotensin receptors with losartan in this subcongenic increased propofol-induced hyperpolarization by threefold to that observed in SS. CONCLUSIONS: Enhanced cardiovascular sensitivity to propofol in SS (compared with BN) is caused by an altered renin gene. Through modified second messenger function, this differentially regulates vascular smooth muscle contractile state and reduces vascular tone, thereby exacerbating cardiovascular depression by propofol.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Farmacogenética/métodos , Propofol/farmacologia , Renina/efeitos dos fármacos , Renina/genética , Análise de Variância , Animais , Animais Congênicos , Anti-Hipertensivos/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Relação Dose-Resposta a Droga , Losartan/administração & dosagem , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl
13.
Am J Physiol Cell Physiol ; 297(3): C679-87, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19587221

RESUMO

Transient receptor potential melastatin (TRPM) is a subfamily of ion channels that are involved in sensing taste, ambient temperature, low pH, osmolarity, and chemical ligands. Melastatin 1/TRPM1, the founding member, was originally identified as melanoma metastasis suppressor based on its expression in normal pigment cells in the skin and the eye but not in aggressive, metastasis-competent melanomas. The role of TRPM1 and its regulation in normal melanocytes and in melanoma progression is not understood. Here, we studied the relationship of TRPM1 expression to growth and differentiation of human epidermal melanocytes. TRPM1 expression and intracellular Ca(2+) levels are significantly lower in rapidly proliferating melanocytes compared to the slow growing, differentiated melanocytes. We show that lentiviral short hairpin RNA (shRNA)-mediated knockdown of TRPM1 results in reduced intracellular Ca(2+) and decreased Ca(2+) uptake suggesting a role for TRPM1 in Ca(2+) homeostasis in melanocytes. TRPM1 knockdown also resulted in a decrease in tyrosinase activity and intracellular melanin pigment. Expression of the tumor suppressor p53 by transfection or induction of endogenous p53 by ultraviolet B radiation caused repression of TRPM1 expression accompanied by decrease in mobilization of intracellular Ca(2+) and uptake of extracellular Ca(2+). These data suggest a role for TRPM1-mediated Ca(2+) homeostasis, which is also regulated by ultraviolet B, in melanogenesis.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Melanócitos/metabolismo , Canais de Cátion TRPM/metabolismo , Raios Ultravioleta , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Inativação Gênica , Humanos , Melaninas/biossíntese , Melanócitos/efeitos da radiação
14.
Circ Res ; 101(8): 819-29, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17717301

RESUMO

Increased phosphorylation of the cardiac ryanodine receptor (RyR)2 by protein kinase A (PKA) at the phosphoepitope encompassing Ser2808 has been advanced as a central mechanism in the pathogenesis of cardiac arrhythmias and heart failure. In this scheme, persistent activation of the sympathetic system during chronic stress leads to PKA "hyperphosphorylation" of RyR2-S2808, which increases Ca2+ release by augmenting the sensitivity of the RyR2 channel to diastolic Ca2+. This gain-of-function is postulated to occur with the unique participation of RyR2-S2808, and other potential PKA phosphorylation sites have been discarded. Although it is clear that RyR2 is among the first proteins in the heart to be phosphorylated by beta-adrenergic stimulation, the functional impact of phosphorylation in excitation-contraction coupling and cardiac performance remains unclear. We used gene targeting to produce a mouse model with complete ablation of the RyR2-S2808 phosphorylation site (RyR2-S2808A). Whole-heart and isolated cardiomyocyte experiments were performed to test the role of beta-adrenergic stimulation and PKA phosphorylation of Ser2808 in heart failure progression and cellular Ca2+ handling. We found that the RyR2-S2808A mutation does not alter the beta-adrenergic response, leaves cellular function almost unchanged, and offers no significant protection in the maladaptive cardiac remodeling induced by chronic stress. Moreover, the RyR2-S2808A mutation appears to modify single-channel activity, although modestly and only at activating [Ca2+]. Taken together, these results reveal some of the most important effects of PKA phosphorylation of RyR2 but do not support a major role for RyR2-S2808 phosphorylation in the pathogenesis of cardiac dysfunction and failure.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insuficiência Cardíaca/genética , Receptores Adrenérgicos beta/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
17.
Transplantation ; 103(1): 160-167, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30095738

RESUMO

BACKGROUND: All human islets used in research and for the clinical treatment of diabetes are subject to ischemic damage during pancreas procurement, preservation, and islet isolation. A major factor influencing islet function is exposure of pancreata to cold ischemia during unavoidable windows of preservation by static cold storage (SCS). Improved preservation methods may prevent this functional deterioration. In the present study, we investigated whether pancreas preservation by gaseous oxygen perfusion (persufflation) better preserved islet function versus SCS. METHODS: Human pancreata were preserved by SCS or by persufflation in combination with SCS. Islets were subsequently isolated, and preparations in each group matched for SCS or total preservation time were compared using dynamic glucose-stimulated insulin secretion as a measure of ß-cell function and RNA sequencing to elucidate transcriptomic changes. RESULTS: Persufflated pancreata had reduced SCS time, which resulted in islets with higher glucose-stimulated insulin secretion compared to islets from SCS only pancreata. RNA sequencing of islets from persufflated pancreata identified reduced inflammatory and greater metabolic gene expression, consistent with expectations of reducing cold ischemic exposure. Portions of these transcriptional responses were not associated with time spent in SCS and were attributable to pancreatic reoxygenation. Furthermore, persufflation extended the total preservation time by 50% without any detectable decline in islet function or viability. CONCLUSIONS: These data demonstrate that pancreas preservation by persufflation rather than SCS before islet isolation reduces inflammatory responses and promotes metabolic pathways in human islets, which results in improved ß cell function.


Assuntos
Temperatura Baixa , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Preservação de Órgãos/métodos , Oxigênio/farmacologia , Perfusão/métodos , Adolescente , Adulto , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Pessoa de Meia-Idade , Preservação de Órgãos/efeitos adversos , Via Secretória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Coleta de Tecidos e Órgãos , Adulto Jovem
18.
Mol Cell Endocrinol ; 473: 136-145, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360563

RESUMO

Insulin secretion is stimulated by glucose metabolism and inhibited by catecholamines through adrenergic receptor stimulation. We determined whether catecholamines suppress oxidative metabolism in ß-cells through adrenergic receptors. In Min6 cells and isolated rat islets, epinephrine decreased oxygen consumption rates compared to vehicle control or co-administration of epinephrine with α2-adrenergic receptor antagonist yohimbine. Epinephrine also decreased forskolin-stimulated oxygen consumption rates, indicating cAMP dependent and independent actions. Furthermore, glucose oxidation rates were decreased with epinephrine, independent of the exocytosis of insulin, which was blocked with yohimbine. We evaluated metabolic targets through proteomic analysis after 4 h epinephrine exposure that revealed 466 differentially expressed proteins that were significantly enriched for processes including oxidative metabolism, protein turnover, exocytosis, and cell proliferation. These results demonstrate that acute α2-adrenergic stimulation suppresses glucose oxidation in ß-cells independent of nutrient availability and insulin exocytosis, while cAMP concentrations are elevated. Proteomics and immunoblots revealed changes in electron transport chain proteins that were correlated with lower metabolic reducing equivalents, intracellular ATP concentrations, and altered mitochondrial membrane potential implicating a new role for adrenergic control of mitochondrial function and ultimately insulin secretion.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Colforsina/farmacologia , Epinefrina/farmacologia , Glucose/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Proteômica , Ratos Sprague-Dawley
19.
Croat Med J ; 48(3): 312-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17589973

RESUMO

AIM: Based on previous observations of strain-related alterations in sensitivity to anesthetics, this study used a newly established genetic rat model to identify differences in cardiovascular sensitivity to the commonly used, clinically relevant, anesthetic propofol and to correlate such differences with specific chromosomal substitutions. METHODS: Cardiovascular sensitivity to propofol was compared in groups of normotensive Dahl Salt Sensitive (SS) and Brown Norway (BN) inbred rats, as well as in a unique panel of consomic rats based on these SS and BN parentals. The consomics were produced by introgression of individual BN chromosomes into an otherwise unchanged SS genetic background. Cardiovascular sensitivity was assessed by measuring the infusion rate of propofol required to reduce mean arterial blood pressure by 50% and cause cardiovascular collapse in each parental and consomic strain. RESULTS: Significantly lower propofol infusion rates caused both a 50% reduction in mean arterial pressure and ultimate cardiovascular collapse in SS compared to BN. Substitution of BN chromosome 13, but not of any other BN chromosome, reversed the enhanced propofol sensitivity in SS rats to the level of BN rats. CONCLUSIONS: Differential propofol sensitivity exhibited by SS and BN rat strains is associated with chromosome 13. This is consistent with earlier findings and represents the first complete screening of all rat autosomes for their relationship to anesthetic sensitivity. Initial localization of this sensitivity reversal to chromosome 13 provides a basis upon which additional, more selective genetic screening studies can be applied. Such studies may serve to identify specific regions of the genome responsible for different physiological responses to various anesthetic agents.


Assuntos
Anestésicos Intravenosos/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Cromossomos de Mamíferos/genética , Propofol/farmacologia , Animais , Animais Congênicos , Pressão Sanguínea/efeitos dos fármacos , Farmacogenética , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Choque/induzido quimicamente
20.
Transplantation ; 101(11): 2705-2712, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28263224

RESUMO

BACKGROUND: Encapsulation devices have the potential to enable cell-based insulin replacement therapies (such as human islet or stem cell-derived ß cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high ß cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell-based insulin replacement. In this study, the acute effects of high-density ischemia were investigated in human islets to develop a detailed profile of early ischemia induced changes and targets for intervention. METHODS: Human islets were exposed in a pairwise model simulating high-density encapsulation to normoxic or ischemic culture for 12 hours, after which viability and function were measured. RNA sequencing was conducted to assess transcriptome-wide changes in gene expression. RESULTS: Islet viability after acute ischemic exposure was reduced compared to normoxic culture conditions (P < 0.01). Insulin secretion was also diminished, with ischemic ß cells losing their insulin secretory response to stimulatory glucose levels (P < 0.01). RNA sequencing revealed 657 differentially expressed genes following ischemia, with many that are associated with increased inflammatory and hypoxia-response signaling and decreased nutrient transport and metabolism. CONCLUSIONS: In order for cell-based insulin replacement to be applied as a treatment for type 1 diabetes, oxygen and nutrient delivery to ß cells will need to be maintained. We demonstrate that even brief ischemic exposure such as would be experienced in encapsulation devices damages islet viability and ß cell function and leads to increased inflammatory signaling.


Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Técnicas de Cultura de Tecidos , Adulto , Hipóxia Celular , Sobrevivência Celular , Citocinas/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Fatores de Tempo , Sobrevivência de Tecidos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA