Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391529

RESUMO

Cytomegalovirus (CMV) is a common, neurotrophic herpesvirus that can be reactivated by inflammation and cause central nervous system disease. We hypothesize that CMV may contribute to the neuroinflammation that underlies some psychiatric disorders by (1) exacerbating inflammation through the induction of anti-viral immune responses, and (2) translating peripheral inflammation into neuroinflammation. We investigated whether the presence of anti-CMV antibodies in blood were associated with mental illness, suicide, neuroinflammation, and microglial density in the dorsolateral prefrontal cortex (DLPFC) in postmortem samples. Data (n = 114 with schizophrenia; n = 78 with bipolar disorder; n = 87 with depression; n = 85 controls) were obtained from the Stanley Medical Research Institute. DLPFC gene expression data from a subset of 82 samples were categorized into "high" (n = 30), and "low" (n = 52) inflammation groups based on a recursive two-step cluster analysis using expression data for four inflammation-related genes. Measurements of the ratio of non-ramified to ramified microglia, a proxy of microglial activation, were available for a subset of 49 samples. All analyses controlled for age, sex, and ethnicity, as well as postmortem interval, and pH for gene expression and microglial outcomes. CMV seropositivity significantly increased the odds of a mood disorder diagnosis (bipolar disorder: OR = 2.45; major depression: OR = 3.70) and among the psychiatric samples, of suicide (OR = 2.09). Samples in the upper tercile of anti-CMV antibody titers were more likely to be members of the "high" inflammation group (OR = 4.41, an effect driven by schizophrenia and bipolar disorder samples). CMV positive samples also showed an increased ratio of non-ramified to ramified microglia in layer I of the DLPFC (Cohen's d = 0.81) as well as a non-significant increase in this ratio for the DLPFC as a whole (d = 0.56). The results raise the possibility that the reactivation of CMV contributes to the neuroinflammation that underlies some cases of psychiatric disorders.

2.
Mol Psychiatry ; 28(2): 843-855, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36333582

RESUMO

Upregulation of genes and coexpression networks related to immune function and inflammation have been repeatedly reported in the brain of individuals with schizophrenia. However, a causal relationship between the abnormal immune/inflammation-related gene expression and schizophrenia has not been determined. We conducted co-expression networks using publicly available RNA-seq data from prefrontal cortex (PFC) and hippocampus (HP) of 64 individuals with schizophrenia and 64 unaffected controls from the SMRI tissue collections. We identified proinflammatory cytokine, transmembrane tumor necrosis factor-α (tmTNFα), as a potential regulator in the module of co-expressed genes that we find related to the immune/inflammation response in endothelial cells (ECs) and/or microglia of the brain of individuals with schizophrenia. The immune/inflammation-related modules associated with schizophrenia and the TNF signaling pathway that regulate the network were replicated in an independent cohort of brain samples from 68 individuals with schizophrenia and 135 unaffected controls. To investigate the association between the overexpression of tmTNFα in brain ECs and schizophrenia-like behaviors, we induced short-term overexpression of the uncleavable form of (uc)-tmTNFα in ECs of mouse brain for 7 weeks. We found schizophrenia-relevant behavioral deficits in these mice, including cognitive impairment, abnormal sensorimotor gating, and sensitization to methamphetamine (METH) induced locomotor activity and METH-induced neurotransmitter levels. These uc-tmTNFα effects were mediated by TNF receptor2 (TNFR2) and induced activation of TNFR2 signaling in astrocytes and neurons. A neuronal module including neurotransmitter signaling pathways was down-regulated in the brain of mice by the short-term overexpression of the gene, while an immune/inflammation-related module was up-regulated in the brain of mice after long-term expression of 22 weeks. Our results indicate that tmTNFα may play a direct role in regulating neurotransmitter signaling pathways that contribute to the clinical features of schizophrenia.


Assuntos
Metanfetamina , Esquizofrenia , Camundongos , Animais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Esquizofrenia/metabolismo , Células Endoteliais/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Encéfalo/metabolismo , Inflamação/genética
3.
Brain Behav Immun ; 111: 46-60, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36972743

RESUMO

Transcript levels of cytokines and SERPINA3 have been used to define a substantial subset (40%) of individuals with schizophrenia with elevated inflammation and worse neuropathology in the dorsolateral prefrontal cortex (DLPFC). In this study, we tested if inflammatory proteins are likewise related to high and low inflammatory states in the human DLFPC in people with schizophrenia and controls. Levels of inflammatory cytokines (IL6, IL1ß, IL18, IL8) and a macrophage marker (CD163 protein) were measured in brains obtained from the National Institute of Mental Health (NIMH) (N = 92). First, we tested for diagnostic differences in protein levels overall, then we determined the percentage of individuals that could be defined as "high" inflammation using protein levels. IL-18 was the only cytokine to show increased expression in schizophrenia compared to controls overall. Interestingly, two-step recursive clustering analysis showed that IL6, IL18, and CD163 protein levels could be used as predictors of "high and low" inflammatory subgroups. By this model, a significantly greater proportion of schizophrenia cases (18/32; 56.25%; SCZ) were identified as belonging to the high inflammatory (HI) subgroup compared to control cases (18/60; 30%; CTRL) [χ2(1) = 6.038, p = 0.014]. When comparing across inflammatory subgroups, IL6, IL1ß, IL18, IL8, and CD163 protein levels were elevated in both SCZ-HI and CTRL-HI compared to both low inflammatory subgroups (all p < 0.05). Surprisingly, TNFα levels were significantly decreased (-32.2%) in schizophrenia compared to controls (p < 0.001), and were most diminished in the SCZ-HI subgroup compared to both CTRL-LI and CTRL-HI subgroups (p < 0.05). Next, we asked if the anatomical distribution and density of CD163+ macrophages differed in those with schizophrenia and high inflammation status. Macrophages were localized to perivascular sites and found surrounding small, medium and large blood vessels in both gray matter and white matter, with macrophage density highest at the pial surface in all schizophrenia cases examined. A higher density of CD163+ macrophages, that were also larger and more darkly stained, was found in the SCZ-HI subgroup (+154% p < 0.05). We also confirmed the rare existence of parenchymal CD163+ macrophages in both high inflammation subgroups (schizophrenia and controls). Brain CD163+ cell density around blood vessels positively correlated with CD163 protein levels. In conclusion, we find a link between elevated interleukin cytokine protein levels, decreased TNFα protein levels, and elevated CD163+ macrophage densities especially along small blood vessels in those with neuroinflammatory schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Interleucina-18 , Fator de Necrose Tumoral alfa , Microglia/metabolismo , Interleucina-6 , Interleucina-8 , Macrófagos/metabolismo , Inflamação , Citocinas/metabolismo
4.
Brain Behav Immun ; 111: 186-201, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958512

RESUMO

In addition to their traditional roles in immune cell communication, cytokines regulate brain development. Cytokines are known to influence neural cell generation, differentiation, maturation, and survival. However, most work on the role of cytokines in brain development investigates rodents or focuses on prenatal events. Here, we investigate how mRNA and protein levels of key cytokines and cytokine receptors change during postnatal development of the human prefrontal cortex. We find that most cytokine transcripts investigated (IL1B, IL18, IL6, TNF, IL13) are lowest at birth and increase between 1.5 and 5 years old. After 5 years old, transcriptional patterns proceeded in one of two directions: decreased expression in teens and young adults (IL1B, p = 0.002; and IL18, p = 0.004) or increased mean expression with maturation, particularly in teenagers (IL6, p = 0.004; TNF, p = 0.002; IL13, p < 0.001). In contrast, cytokine proteins tended to remain elevated after peaking significantly around 3 years of age (IL1B, p = 0.012; IL18, p = 0.026; IL6, p = 0.039; TNF, p < 0.001), with TNF protein being highest in teenagers. An mRNA-only analysis of cytokine receptor transcripts found that early developmental increases in cytokines were paralleled by increases in their ligand-binding receptor subunits, such as IL1R1 (p = 0.033) and IL6R (p < 0.001) transcripts. In contrast, cytokine receptor-associated signaling subunits, IL1RAP and IL6ST, did not change significantly between age groups. Of the two TNF receptors, the 'pro-death' TNFRSF1A and 'pro-survival' TNFRSF1B, only TNFRSF1B was significantly changed (p = 0.028), increasing first in toddlers and again in young adults. Finally, the cytokine inhibitor, IL13, was elevated first in toddlers (p = 0.006) and again in young adults (p = 0.053). While the mean expression of interleukin-1 receptor antagonist (IL1RN) was highest in toddlers, this increase was not statistically significant. The fluctuations in cytokine expression reported here support a role for increases in specific cytokines at two different stages of human cortical development. The first is during the toddler/preschool period (IL1B, IL18, and IL13), and the other occurs at adolescence/young adult maturation (IL6, TNF and IL13).


Assuntos
Citocinas , Interleucina-6 , Feminino , Gravidez , Recém-Nascido , Adulto Jovem , Adolescente , Humanos , Pré-Escolar , Lactente , Citocinas/metabolismo , Interleucina-6/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Córtex Pré-Frontal Dorsolateral , Interleucina-13 , Interleucina-18/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , RNA Mensageiro
5.
Mol Psychiatry ; 27(11): 4731-4740, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36192459

RESUMO

The midbrain is an extensively studied brain region in schizophrenia, in view of its reported dopamine pathophysiology and neuroimmune changes associated with this disease. Besides the dopaminergic system, the midbrain contains other cell types that may be involved in schizophrenia pathophysiology. The neurovascular hypothesis of schizophrenia postulates that both the neurovasculature structure and the functioning of the blood-brain barrier (BBB) are compromised in schizophrenia. In the present study, potential alteration in the BBB of patients with schizophrenia was investigated by single-nucleus RNA sequencing of post-mortem midbrain tissue (15 schizophrenia cases and 14 matched controls). We did not identify changes in the relative abundance of the major BBB cell types, nor in the sub-populations, associated with schizophrenia. However, we identified 14 differentially expressed genes in the cells of the BBB in schizophrenia as compared to controls, including genes that have previously been related to schizophrenia, such as FOXP2 and PDE4D. These transcriptional changes were limited to the ependymal cells and pericytes, suggesting that the cells of the BBB are not broadly affected in schizophrenia.


Assuntos
Barreira Hematoencefálica , Esquizofrenia , Humanos , Barreira Hematoencefálica/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Mesencéfalo/metabolismo , Dopamina/metabolismo , Análise de Sequência de RNA
6.
Proc Natl Acad Sci U S A ; 117(46): 28743-28753, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139572

RESUMO

Mammalian brain glycome remains a relatively poorly understood area compared to other large-scale "omics" studies, such as genomics and transcriptomics due to the inherent complexity and heterogeneity of glycan structure and properties. Here, we first performed spatial and temporal analysis of glycome expression patterns in the mammalian brain using a cutting-edge experimental tool based on liquid chromatography-mass spectrometry, with the ultimate aim to yield valuable implications on molecular events regarding brain functions and development. We observed an apparent diversity in the glycome expression patterns, which is spatially well-preserved among nine different brain regions in mouse. Next, we explored whether the glycome expression pattern changes temporally during postnatal brain development by examining the prefrontal cortex (PFC) at different time point across six postnatal stages in mouse. We found that glycan expression profiles were dynamically regulated during postnatal developments. A similar result was obtained in PFC samples from humans ranging in age from 39 d to 49 y. Novel glycans unique to the brain were also identified. Interestingly, changes primarily attributed to sialylated and fucosylated glycans were extensively observed during PFC development. Finally, based on the vast heterogeneity of glycans, we constructed a core glyco-synthesis map to delineate the glycosylation pathway responsible for the glycan diversity during the PFC development. Our findings reveal high levels of diversity in a glycosylation program underlying brain region specificity and age dependency, and may lead to new studies exploring the role of glycans in spatiotemporally diverse brain functions.


Assuntos
Metabolismo dos Carboidratos , Polissacarídeos/biossíntese , Córtex Pré-Frontal/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Glicômica , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Córtex Pré-Frontal/crescimento & desenvolvimento , Adulto Jovem
7.
Brain Behav Immun ; 105: 149-159, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764269

RESUMO

Dopamine dysregulation in schizophrenia may be associated with midbrain inflammation. Previously, we found elevated levels of pro-inflammatory cytokine mRNAs in the post-mortem midbrain of people with schizophrenia (46%) but not from unaffected controls (0%) using a brain cohort from Sydney, Australia. Here, we measured cytokine mRNAs and proteins in the midbrain in the Stanley Medical Research Institute (SMRI) array cohort (N = 105). We tested if the proportions of individuals with schizophrenia and with high inflammation can be replicated, and if individuals with bipolar disorder with elevated midbrain cytokines can be identified. mRNA levels of 7 immune transcripts from post-mortem midbrain tissue were measured via RT-PCR and two-step recursive clustering analysis was performed using 4 immune transcripts to define "high and low" inflammatory subgroups. The clustering predictors used were identical to our earlier midbrain study, and included: IL1B, IL6, TNF, and SERPINA3 mRNA levels. 46% of schizophrenia cases (16/35 SCZ), 6% of controls (2/33 CTRL), and 29% of bipolar disorder cases (10/35 BPD) were identified as belonging to the high inflammation (HI) subgroups [χ2 (2) = 13.54, p < 0.001]. When comparing inflammatory subgroups, all four mRNAs were significantly increased in SCZ-HI and BPD-HI compared to low inflammation controls (CTRL-LI) (p < 0.05). Additionally, protein levels of IL-1ß, IL-6, and IL-18 were elevated in SCZ-HI and BPD-HI compared to all other low inflammatory subgroups (all p < 0.05). Surprisingly, TNF-α protein levels were unchanged according to subgroups. In conclusion, we determined that almost half of the individuals with schizophrenia were defined as having high inflammation in the midbrain, replicating our previous findings. Further, we detected close to one-third of those with bipolar disorder to be classified as having high inflammation. Elevations in some pro-inflammatory cytokine mRNAs (IL-1ß and IL-6) were also found at the protein level, whereas TNF mRNA and protein levels were not concordant.


Assuntos
Transtorno Bipolar , Esquizofrenia , Citocinas/genética , Citocinas/metabolismo , Humanos , Inflamação , Interleucina-6/metabolismo , Mesencéfalo/metabolismo , RNA Mensageiro/genética
8.
Mol Psychiatry ; 26(11): 6880-6895, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34059796

RESUMO

Neural stem cells in the human subependymal zone (SEZ) generate neuronal progenitor cells that can differentiate and integrate as inhibitory interneurons into cortical and subcortical brain regions; yet the extent of adult neurogenesis remains unexplored in schizophrenia and bipolar disorder. We verified the existence of neurogenesis across the lifespan by chartering transcriptional alterations (2 days-103 years, n = 70) and identifying cells indicative of different stages of neurogenesis in the human SEZ. Expression of most neural stem and neuronal progenitor cell markers decreased during the first postnatal years and remained stable from childhood into ageing. We next discovered reduced neural stem and neuronal progenitor cell marker expression in the adult SEZ in schizophrenia and bipolar disorder compared to controls (n = 29-32 per group). RNA sequencing identified increased expression of the macrophage marker CD163 as the most significant molecular change in schizophrenia. CD163+ macrophages, which were localised along blood vessels and in the parenchyma within 10 µm of neural stem and progenitor cells, had increased density in schizophrenia but not in bipolar disorder. Macrophage marker expression negatively correlated with neuronal progenitor marker expression in schizophrenia but not in controls or bipolar disorder. Reduced neurogenesis and increased macrophage marker expression were also associated with polygenic risk for schizophrenia. Our results support that the human SEZ retains the capacity to generate neuronal progenitor cells throughout life, although this capacity is limited in schizophrenia and bipolar disorder. The increase in macrophages in schizophrenia but not in bipolar disorder indicates that immune cells may impair neurogenesis in the adult SEZ in a disease-specific manner.


Assuntos
Células-Tronco Neurais , Esquizofrenia , Adulto , Criança , Humanos , Macrófagos , Neurogênese/fisiologia , Neurônios
9.
J Neurochem ; 157(3): 479-493, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33190236

RESUMO

Immune system components also regulate synapse formation and refinement in neurodevelopment. The complement pathway, associated with cell lysis and phagocytosis, is implicated in synaptic elimination. Aberrant adolescent synaptic pruning may underpin schizophrenia onset; thus, changes in cortical complement activity during human development are of major interest. Complement is genetically linked to schizophrenia via increased C4 copy number variants, but the developmental trajectory of complement expression in the human brain is undetermined. As complement increases during periods of active synaptic engulfment in rodents, we hypothesized that complement expression would increase during postnatal development in humans, particularly during adolescence. Using human postmortem prefrontal cortex, we observed that complement activator (C1QB and C3) transcripts peaked in early neurodevelopment, and were highest in toddlers, declining in teenagers (all ANCOVAs between F = 2.41 -3.325, p = .01-0.05). We found that C4 protein was higher at 1-5 years (H = 16.378, p = .012), whereas C3 protein levels were unchanged with age. The microglial complement receptor subunit CD11b increased in mRNA early in life and peaked in the toddler brain (ANCOVA: pH, F = 4.186, p = .003). Complement inhibitors (CD46 and CD55) increased at school age, but failed to decrease like complement activators (both ANCOVAs, F > 4.4, p < .01). These data suggest the activation of complement in the human prefrontal cortex occurs between 1 and 5 years. We did not find evidence of induction of complement factors during adolescence and instead found increased or sustained levels of complement inhibitor mRNA at maturation. Dysregulation of these typical patterns of complement may predispose the brain to neurodevelopmental disorders such as autism or schizophrenia.


Assuntos
Envelhecimento/metabolismo , Química Encefálica/fisiologia , Encéfalo/crescimento & desenvolvimento , Proteínas do Sistema Complemento/metabolismo , Adolescente , Adulto , Antígeno CD11b/biossíntese , Antígeno CD11b/genética , Antígeno CD56/genética , Antígeno CD56/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Criança , Pré-Escolar , Via Clássica do Complemento/genética , DNA/biossíntese , DNA/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Adulto Jovem
10.
Mol Psychiatry ; 25(4): 761-775, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30214039

RESUMO

Elevated pro-inflammatory cytokines exist in both blood and brain of people with schizophrenia but how this affects molecular indices of the blood-brain barrier (BBB) is unclear. Eight mRNAs relating to BBB function, a microglia and three immune cell markers were measured by qPCR in the prefrontal cortex from 37 people with schizophrenia/schizoaffective disorder and 37 matched controls. This cohort was previously grouped into "high inflammation" and "low inflammation" subgroups based on cortical inflammatory-related transcripts. Soluble intercellular adhesion molecule-1 (sICAM1) was measured in the plasma of 78 patients with schizophrenia/schizoaffective disorder and 73 healthy controls. We found that sICAM1 was significantly elevated in schizophrenia. An efflux transporter, ABCG2, was lower, while mRNAs encoding VE-cadherin and ICAM1 were higher in schizophrenia brain. The "high inflammation" schizophrenia subgroup had lower ABCG2 and higher ICAM1, VE-cadherin, occludin and interferon-induced transmembrane protein mRNAs compared to both "low inflammation" schizophrenia and "low inflammation" control subgroups. ICAM1 immunohistochemistry showed enrichment in brain endothelium regardless of diagnosis and was localised to astrocytes in some brains. Microglia mRNA was not altered in schizophrenia nor did it correlate with ICAM1 expression. Immune cell mRNAs were elevated in "high inflammation" schizophrenia compared to both "low inflammation" schizophrenia and controls. CD163+ perivascular macrophages were identified by immunohistochemistry in brain parenchyma in over 40% of "high inflammation" schizophrenia brains. People with high levels of cytokine expression and schizophrenia display changes consistent with greater immune cell transmigration into brain via increased ICAM1, which could contribute to other neuropathological changes found in this subgroup of people.


Assuntos
Lobo Frontal/patologia , Macrófagos/metabolismo , Esquizofrenia/genética , Adulto , Astrócitos/metabolismo , Biomarcadores/sangue , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encefalite/patologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Feminino , Lobo Frontal/metabolismo , Expressão Gênica/genética , Humanos , Inflamação , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/patologia , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Transtornos Psicóticos/patologia , Esquizofrenia/metabolismo
11.
Mol Psychiatry ; 25(11): 2712-2727, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988434

RESUMO

Although circular RNAs (circRNAs) are enriched in the mammalian brain, very little is known about their potential involvement in brain function and psychiatric disease. Here, we show that circHomer1a, a neuronal-enriched circRNA abundantly expressed in the frontal cortex, derived from Homer protein homolog 1 (HOMER1), is significantly reduced in both the prefrontal cortex (PFC) and induced pluripotent stem cell-derived neuronal cultures from patients with schizophrenia (SCZ) and bipolar disorder (BD). Moreover, alterations in circHomer1a were positively associated with the age of onset of SCZ in both the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). No correlations between the age of onset of SCZ and linear HOMER1 mRNA were observed, whose expression was mostly unaltered in BD and SCZ postmortem brain. Using in vivo circRNA-specific knockdown of circHomer1a in mouse PFC, we show that it modulates the expression of numerous alternative mRNA transcripts from genes involved in synaptic plasticity and psychiatric disease. Intriguingly, in vivo circHomer1a knockdown in mouse OFC resulted in specific deficits in OFC-mediated cognitive flexibility. Lastly, we demonstrate that the neuronal RNA-binding protein HuD binds to circHomer1a and can influence its synaptic expression in the frontal cortex. Collectively, our data uncover a novel psychiatric disease-associated circRNA that regulates synaptic gene expression and cognitive flexibility.


Assuntos
Transtorno Bipolar/genética , Cognição , Regulação da Expressão Gênica , RNA Circular/genética , Esquizofrenia/genética , Sinapses/metabolismo , Adulto , Animais , Feminino , Proteínas de Arcabouço Homer/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo
12.
J Neuroinflammation ; 17(1): 215, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680547

RESUMO

BACKGROUND: High inflammation status despite an absence of known infection characterizes a subpopulation of people with schizophrenia who suffer from more severe cognitive deficits, less cortical grey matter, and worse neuropathology. Transcripts encoding factors upstream of nuclear factor kappa B (NF-κB), a major transcriptional activator for the synthesis of pro-inflammatory cytokines, are increased in the frontal cortex in schizophrenia compared to controls. However, the extent to which these changes are disease-specific, restricted to those with schizophrenia and high-neuroinflammatory status, or caused by loss of a key NF-κB inhibitor (HIVEP2) found in schizophrenia brain, has not been tested. METHODS: Post-mortem prefrontal cortex samples were assessed in 141 human brains (69 controls and 72 schizophrenia) and 13 brains of wild-type mice and mice lacking HIVEP2 (6 wild-type, 7 knockout mice). Gene expression of pro-inflammatory cytokines and acute phase protein SERPINA3 was used to categorize high and low neuroinflammation biotype groups in human samples via cluster analysis. Expression of 18 canonical and non-canonical NF-κB pathway genes was assessed by qPCR in human and mouse tissue. RESULTS: In humans, we found non-canonical upstream activators of NF-κB were generally elevated in individuals with neuroinflammation regardless of diagnosis, supporting NF-κB activation in both controls and people with schizophrenia when cytokine mRNAs are high. However, high neuroinflammation schizophrenia patients had weaker (or absent) transcriptional increases of several canonical upstream activators of NF-κB as compared to the high neuroinflammation controls. HIVEP2 mRNA reduction was specific to patients with schizophrenia who also had high neuroinflammatory status, and we also found decreases in NF-κB transcripts typically induced by activated microglia in mice lacking HIVEP2. CONCLUSIONS: Collectively, our results show that high cortical expression of pro-inflammatory cytokines and low cortical expression of HIVEP2 in a subset of people with schizophrenia is associated with a relatively weak NF-κB transcriptional signature compared to non-schizophrenic controls with high cytokine expression. We speculate that this comparatively milder NF-κB induction may reflect schizophrenia-specific suppression possibly related to HIVEP2 deficiency in the cortex.


Assuntos
Encéfalo/metabolismo , Citocinas/metabolismo , Proteínas de Ligação a DNA/biossíntese , NF-kappa B/metabolismo , Esquizofrenia/metabolismo , Fatores de Transcrição/biossíntese , Adulto , Animais , Encéfalo/patologia , Citocinas/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , NF-kappa B/genética , Esquizofrenia/genética , Esquizofrenia/patologia , Fatores de Transcrição/genética
13.
14.
Eur J Neurosci ; 46(2): 1768-1778, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28612959

RESUMO

Neurogenesis in the subependymal zone (SEZ) declines across the human lifespan, and reduced local neurotrophic support is speculated to be a contributing factor. While tyrosine receptor kinase B (TrkB) signalling is critical for neuronal differentiation, maturation and survival, little is known about subependymal TrkB expression changes during postnatal human life. In this study, we used quantitative PCR and in situ hybridisation to determine expression of the cell proliferation marker Ki67, the immature neuron marker doublecortin (DCX) and both full-length (TrkB-TK+) and truncated TrkB receptors (TrkB-TK-) in the human SEZ from infancy to middle age (n = 26-35, 41 days to 43 years). We further measured TrkB-TK+ and TrkB-TK- mRNAs in the SEZ from young adulthood into ageing (n = 50, 21-103 years), and related their transcript levels to neurogenic and glial cell markers. Ki67, DCX and both TrkB splice variant mRNAs significantly decreased in the SEZ from infancy to middle age. In contrast, TrkB-TK- mRNA increased in the SEZ from young adulthood into ageing, whereas TrkB-TK+ mRNA remained stable. TrkB-TK- mRNA positively correlated with expression of neural precursor (glial fibrillary acidic protein delta and achaete-scute homolog 1) and glial cell markers (vimentin and pan glial fibrillary acidic protein). TrkB-TK+ mRNA positively correlated with expression of neuronal cell markers (DCX and tubulin beta 3 class III). Our results indicate that cells residing in the human SEZ maintain their responsiveness to neurotrophins; however, this capability may change across postnatal life. We suggest that TrkB splice variants may differentially influence neuronal and glial differentiation in the human SEZ.


Assuntos
Envelhecimento/metabolismo , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Glicoproteínas de Membrana/metabolismo , Neurogênese/fisiologia , Receptor trkB/metabolismo , Nicho de Células-Tronco/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Núcleo Caudado/crescimento & desenvolvimento , Núcleo Caudado/metabolismo , Estudos de Coortes , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Humanos , Lactente , Antígeno Ki-67/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Adulto Jovem
15.
J Neural Transm (Vienna) ; 121(7): 783-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24652383

RESUMO

Previous human postmortem studies have shown that expression of glutamate transporters (SLC1A2 and SLC1A3) and gamma-aminobutyric acid-synthesizing enzyme [glutamic acid decarboxylase 1 (GAD1)] are reduced in the dorsolateral prefrontal cortex (dlPFC) in subjects with major depressive disorder (MDD). However, no studies have explored the association between these two molecules and its related biological processes in MDD because of limited postmortem sample availability. Data sharing using the Stanley neuropathology consortium integrative database (SNCID), a web-based tool that integrates datasets from the same postmortem brain samples, allowed us to reanalyze existing postmortem data efficiently. We found two datasets where the mRNA levels of GAD1 and SLC1A2 in subregions of the dlPFC were significantly and marginally lower in subjects with MDD (n = 15) than in controls (n = 15) (p = 0.045 and 0.057, respectively). In addition, there was a positive correlation between these two molecules (n = 30, p < 0.05). Spearman's rank correlation analysis using all available datasets revealed that the expression levels of both GAD1 and SLC1A2 mRNAs were commonly correlated with the expression levels of several neuropathological markers in the dlPFC in all of the SNCID subjects (n = 60, p < 0.001). Most of these markers are known to be involved in the RAF/MEK/ERK signal transduction pathway. This exploratory study provides an initial step for future studies to investigate an association between the reductions in SLC1A2 and GAD1 mRNA expression and their relation to the attenuation of the RAF/MEK/ERK signaling pathway in the dlPFC in MDD. The integration of the existing archival data may shed light on one important aspect of the pathophysiology of MDD.


Assuntos
Transtorno Depressivo Maior/patologia , Regulação da Expressão Gênica/fisiologia , Glutamato Descarboxilase/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Córtex Pré-Frontal/metabolismo , Adulto , Transportador 2 de Aminoácido Excitatório , Feminino , Glutamato Descarboxilase/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mudanças Depois da Morte , Córtex Pré-Frontal/patologia , RNA Mensageiro/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
16.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351133

RESUMO

The subependymal zone (SEZ), also known as the subventricular zone (SVZ), constitutes a neurogenic niche that persists during postnatal life. In humans, the neurogenic potential of the SEZ declines after the first year of life. However, studies discovering markers of stem and progenitor cells highlight the neurogenic capacity of progenitors in the adult human SEZ, with increased neurogenic activity occurring under pathological conditions. In the present study, the complete cellular niche of the adult human SEZ was characterized by single-nucleus RNA sequencing, and compared between four youth (age 16-22) and four middle-aged adults (age 44-53). We identified 11 cellular clusters including clusters expressing marker genes for neural stem cells (NSCs), neuroblasts, immature neurons, and oligodendrocyte progenitor cells. The relative abundance of NSC and neuroblast clusters did not differ between the two age groups, indicating that the pool of SEZ NSCs does not decline in this age range. The relative abundance of oligodendrocyte progenitors and microglia decreased in middle-age, indicating that the cellular composition of human SEZ is remodeled between youth and adulthood. The expression of genes related to nervous system development was higher across different cell types, including NSCs, in youth as compared with middle-age. These transcriptional changes suggest ongoing central nervous system plasticity in the SEZ in youth, which declined in middle-age.


Assuntos
Células-Tronco Neurais , Células Precursoras de Oligodendrócitos , Adulto , Pessoa de Meia-Idade , Adolescente , Humanos , Adulto Jovem , RNA-Seq , Neurônios , Ventrículos Laterais/metabolismo , Neurogênese/fisiologia
17.
Schizophrenia (Heidelb) ; 10(1): 50, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704390

RESUMO

A subgroup of schizophrenia cases with elevated inflammation have reduced neurogenesis markers and increased macrophage density in the human subependymal zone (SEZ; also termed subventricular zone or SVZ) neurogenic niche. Inflammation can impair neurogenesis; however, it is unclear which other pathways are associated with reduced neurogenesis. This research aimed to discover transcriptomic differences between inflammatory subgroups of schizophrenia in the SEZ. Total RNA sequencing was performed on SEZ tissue from schizophrenia cases, designated into low inflammation (n = 13) and high inflammation (n = 14) subgroups, based on cluster analysis of inflammation marker gene expression. 718 genes were differentially expressed in high compared to low inflammation schizophrenia (FDR p < 0.05) and were most significantly over-represented in the pathway 'Hepatic Fibrosis/Hepatic Stellate-Cell Activation'. Genes in this pathway relate to extracellular matrix stability (including ten collagens) and vascular remodelling suggesting increased angiogenesis. Collagen-IV, a key element of the basement membrane and fractones, had elevated gene expression. Immunohistochemistry revealed novel collagen-IV+ fractone bulbs within the human SEZ hypocellular gap. Considering the extracellular matrix's regulatory role in SEZ neurogenesis, fibrosis-related alterations in high inflammation schizophrenia may disrupt neurogenesis. Increased angiogenesis could facilitate immune cell transmigration, potentially explaining elevated macrophages in high inflammation schizophrenia. This discovery-driven analysis sheds light on how inflammation may contribute to schizophrenia neuropathology in the neurogenic niche.

18.
Curr Top Behav Neurosci ; 61: 35-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35505055

RESUMO

While there is an abundance of epidemiological evidence implicating infectious agents in the etiology of severe mental illnesses, postmortem studies have not yet detected an increased incidence of microbial nucleic acid or proteins in the brains of people with mental illness. Nevertheless, abnormally expressed immune and inflammatory markers have consistently been found in the postmortem brain of patients with schizophrenia and mood disorders. Some of these abnormalities may be the result of an infection in utero or early in life that not only impacted the developing immune system but also the developing neurons of the brain. Some of the immune markers that are consistently found to be upregulated in schizophrenia implicate a possible viral infection and the blood brain barrier in the etiology and neuropathology of the disorder.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Transtorno Bipolar/patologia , Encéfalo/metabolismo , Transtorno Depressivo Maior/metabolismo , Inflamação/metabolismo
19.
Brief Funct Genomics ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738675

RESUMO

Schizophrenia genome-wide association studies (GWAS) have reported many genomic risk loci, but it is unclear how they affect schizophrenia susceptibility through interactions of multiple SNPs. We propose a stepwise deep learning technique with multi-precision data (SLEM) to explore the SNP combination effects on schizophrenia through intermediate molecular and cellular functions. The SLEM technique utilizes two levels of precision data for learning. It constructs initial backbone networks with more precise but small amount of multilevel assay data. Then, it learns strengths of intermediate interactions with the less precise but massive amount of GWAS data. The learned networks facilitate identifying effective SNP interactions from the intractably large space of all possible SNP combinations. We have shown that the extracted SNP combinations show higher accuracy than any single SNPs and preserve the accuracy in an independent dataset. The learned networks also provide interpretations of molecular and cellular interactions of SNP combinations toward schizophrenia etiology.

20.
BMC Neurosci ; 13: 18, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22336227

RESUMO

BACKGROUND: Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC) is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5), catechol-O-methyltransferase, and monoamine oxidase (A and B) in the developing human DLPFC (6 weeks -50 years). RESULTS: Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p < 0.001) then gradually declined to adulthood. Similarly, mRNA levels of dopamine receptors D2S (p < 0.001) and D2L (p = 0.003) isoforms, monoamine oxidase A (p < 0.001) and catechol-O-methyltransferase (p = 0.024) were significantly higher in neonates and infants as was catechol-O-methyltransferase protein (32 kDa, p = 0.027). In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002) and dopamine D1 receptor protein expression increased throughout development (p < 0.001) with adults having the highest D1 protein levels (p ≤ 0.01). Monoamine oxidase B mRNA and protein (p < 0.001) levels also increased significantly throughout development. Interestingly, dopamine D5 receptor mRNA levels negatively correlated with age (r = -0.31, p = 0.018) in an expression profile opposite to that of the dopamine D1 receptor. CONCLUSIONS: We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.


Assuntos
Catecol O-Metiltransferase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Monoaminoxidase/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Receptores Dopaminérgicos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Adolescente , Adulto , Fatores Etários , Análise de Variância , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Monoaminoxidase/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Receptores Dopaminérgicos/genética , Tirosina 3-Mono-Oxigenase/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA