RESUMO
An analysis of 82 non-synonymous Pisum fulvum accessions for sequence variation in a fragment of the STAYGREEN (SGR) locus revealed 57 alleles, most of which differed in indel structure. Eight additional P. fulvum accessions, each supposedly synonymous with a different accession of the initial group, were also analyzed. In every case the paired synonymous accessions possessed the same SGR sequence but varied slightly for a 6-trait morphological phenotype, indicating that SGR sequence is a much more reliable indicator of accession identity than is a morphological characterization. SGR sequence analysis confirmed our previous finding that P. fulvum accessions separate into two allele groups. This division was not supported by results of previous studies that were based on sequences distributed across the entire genome, suggesting that the division may have been produced by selection at a nearby locus and that the SGR phylogeny may not be good indicator of overall relationships within the species. One P. fulvum accession, PI 595941 (=JI1796), displayed an SGR sequence outside the variation typical of the species. Instead, its allele resembled alleles limited to a set of Pisum sativum landraces from the Middle East, suggesting hybridization between ancestors of PI 595941 and some primitive form of domesticated P. sativum. With one exception from the extreme northwest corner of Israel, P. fulvum accessions collected north of latitude 35.5° N were fixed for alleles from group A. These northern accessions also displayed greatly reduced SGR sequence diversity compared to group A accessions collected from other regions, suggesting that the northern populations may represent recent extensions of the range of the species. Group B accessions were distributed from Lake Tiberias south and were generally sympatric with the southern group A accessions. Although group B accessions occupied a smaller area than group A, the SGR sequence diversity in this group (28 alleles in 33 accessions) exceeded that for group A.
RESUMO
The review sums up the long experience of the authors and other researchers in studying the genetic system of garden pea (Pisum sativum L.), which controls sthe development of nitrogen-fixing symbiosis and arbuscular mycorrhiza. A justified phenotypic classification of pea mutants is presented. Progress in identifying and cloning symbiotic genes is adequately reflected. The feasibility of using double inoculation as a means of increasing the plant productivity is demonstrated, in which the potential of a tripartite symbiotic system (pea plants-root nodule bacteria-arbuscular mycorrhiza) is mobilized.
Assuntos
Bactérias/genética , Micorrizas/genética , Fixação de Nitrogênio/genética , Pisum sativum/genética , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Mutação , Nódulos Radiculares de Plantas/microbiologiaRESUMO
The parentals of the interspecific cross Cucurbita maxima xC. ecuadorensis had different isozyme phenotypes for 12 enzyme systems. Characterization of the systems demonstrated that the expression and intracellular distribution of the isozymes were similar to those in other plant taxa; however, a considerable number of duplicate loci were identified, indicative of a polyploid ancestry for Cucurbita. Genetic analysis provided evidence for 20 loci segregating in F(2) and backcross populations. Five linkage groups were identified, consisting of the loci Aat-mb - - Mdh-m2; Gal-1 - - Gal-2; Aat-p2 - - Gpi-c2; Acp-1 - - Pgm-c2 - - Pgm-p; and Est-1 - - Tpi-c2. Significant deviations from Mendelian segregation ratios were observed in 14% of the data sets for individual loci. However, these instances were scattered among the loci, no single locus consistently displaying skewed ratios. Recombination frequencies between linked loci were similar to those observed in intraspecific crosses, and the ratio of heterozygous to homozygous genotypes in backcross populations was very close to one. These results suggest that small differences in chromosome structure were not the major cause of the loss of fertility observed in F(2) and backcross populations.
RESUMO
Twenty-one independent chloroplast DNA polymorphisms were identified in Vigna unguiculata defining 19 different chloroplast DNA molecules (plastome types). Two plastome types, differing by a single character, were found among 32 accessions of cultivated cowpea (Vigna unguiculata ssp. unguiculata). Eighteen different plastome types were found among 26 accessions of wild cowpea (V. unguiculata ssp. dekindtiana). The very low level of chloroplast DNA diversity found in cultivated accessions relative to wild cowpea suggests that 1) the domesticated form was derived from a narrow selection of the wild germplasm and 2) chloroplast gene flow between wild and cultivated types has been very limited. Cladistic analysis of the cpDNA data generated a robust tree completely lacking homoplasy. Three wild accessions from Nigeria possessed a plastome type indistinguishable from one present in cultivated accessions, suggesting that Nigeria represents one center of domestication of the cowpea. The other plastome type within the cultivated germplasm was not found among wild accessions.
RESUMO
It was earlier suggested that the lupine taxa identified as Lupinus graecus Boissier et Spruner, L. jugoslavicus Kazim. et Now., and L. vavilovi Majss. et Atab. should be considered one species, L. albus, with two botanical varieties: var. albus (bitter cultivated form) and var. graecus (wild ancestor). We investigated this possibility by examining the genetic distance between L. albus, L. termis and L. vavilovi with RAPD markers. The genetic distances between taxa were found to be very small (<0.1), similar to results for other conspecific taxa. In addition, only three of 146 amplified fragments examined were unique to a specific taxon (L. vavilovi). We conclude that the three taxa studied belong to one species and can be divided into two varieties, as suggested earlier.
RESUMO
Pea (Pisum sativum L.) has a genome of about 4 Gb that appears to share conserved synteny with model legumes having genomes of 0.2-0.4 Gb despite extensive intergenic expansion. Pea plant inventory (PI) accession 269818 has been used to introgress genetic diversity into the cultivated germplasm pool. The aim here was to develop pea bacterial artificial chromosome (BAC) libraries that would enable the isolation of genes involved in plant disease resistance or control of economically important traits. The BAC libraries encompassed about 3.2 haploid genome equivalents consisting of partially HindIII-digested DNA fragments with a mean size of 105 kb that were inserted in 1 of 2 vectors. The low-copy oriT-based T-DNA vector (pCLD04541) library contained 55 680 clones. The single-copy oriS-based vector (pIndigoBAC-5) library contained 65 280 clones. Colony hybridization of a universal chloroplast probe indicated that about 1% of clones in the libraries were of chloroplast origin. The presence of about 0.1% empty vectors was inferred by white/blue colony plate counts. The usefulness of the libraries was tested by 2 replicated methods. First, high-density filters were probed with low copy number sequences. Second, BAC plate-pool DNA was used successfully to PCR amplify 7 of 9 published pea resistance gene analogs (RGAs) and several other low copy number pea sequences. Individual BAC clones encoding specific sequences were identified. Therefore, the HindIII BAC libraries of pea, based on germplasm accession PI 269818, will be useful for the isolation of genes underlying disease resistance and other economically important traits.
Assuntos
Cromossomos Artificiais Bacterianos/química , Biblioteca Gênica , Genes de Plantas , Pisum sativum/genética , Marcadores Genéticos , Pisum sativum/classificaçãoRESUMO
The hypothesis stating that chloroplasts were derived from a photosynthetic procaryote is explored at a genetic and biochemical level. A transfer of genetic material from the endosymbiont to the nucleus of the host cell is proposed along with a corollary argument that the protein products of such transferred genes have remained specific to the chloroplast. This model provides an explanation for the presence of plastid-specific isozymes which are coded by nuclear DNA. It also suggests that the genome of the endosymbiont contributed the information necessary for the biosynthesis of carotenoids and the "essential" amino acids and the assimilation of nitrate-nitrogen and sulfate-sulfur. Animal cells lack these capabilities not because such were lost subsequent to the divergence of the plant and animal lines, but because animal cells did not become host to the appropriate symbionts. Additional implications of this thesis are discussed.
Assuntos
Evolução Biológica , Cloroplastos/metabolismo , Aminoácidos/biossíntese , Ácido Aminolevulínico/metabolismo , Metabolismo dos Carboidratos , Genes , Glicólise , Fotossíntese , Plantas/metabolismoRESUMO
Leaf cytosolic fructose-1,6-bisphosphatase (FBPase), partially purified from both spinach (Spinacia oleracea, var Hipack) and peas (Pisum sativum, var Progress No. 9), is reversibly inactivated by exposure to low temperature. Thus, even though assays were conducted at 22 degrees C, samples incubated at 0 to 12 degrees C had greatly reduced activity relative to controls maintained at 22 degrees C. Following incubation at 22 degrees C prior to assay, the inactivated samples regained their initial activity. Chloroplast FBPase, by contrast, was unaffected by low temperature treatment. This feature as well as lack of a response of cytosolic FBPase to thioredoxins f or c(f) and to chloroplast FBPase antibody indicate that the FBPase isozymes of leaves are different proteins.
RESUMO
The different electrophoretic patterns of dimeric phosphoglucoisomerases extracted from haploid pollen and diploid somatic tissues of plants may be used to distinguish allozymes and isozymes. The analysis depends on the presence of two alleles at each locus in somatic tissues but only one or the other allele in pollen grains. Consequently, in heterozygotes, heterodimeric allozymes can be identified because they are formed in stems and leaves but not in pollen. The procedure is described in enzymes extracted from the diploid annual plant Clarkia dudleyana, which possesses three gene loci for PGI subunits. Comparison of the electrophoretic patterns of stem and pollen extracts makes it possible in many cases to identify allelic state without breeding tests. The technique also is likely to be useful in the interpretation of zymograms of other multimeric enzymes coded by more than one gene locus.
Assuntos
Glucose-6-Fosfato Isomerase/genética , Isoenzimas/genética , Plantas/enzimologia , Pólen , Alelos , Genótipo , Heterozigoto , Substâncias MacromolecularesRESUMO
The cytoplasmic isozyme of many cytoplasmic-organelle isozyme pairs, as well as other cytoplasmic enzymes in plants, can be readily obtained from pollen by soaking it in an appropriate buffer for 4 hours. Enzymes localized in subcellular organelles appear not to be released during the soaking period, although they are released if the pollen is crushed. The technique is a useful initial step in studies of subcellular localization of enzymes or for obtaining small quantities of cytoplasmic enzymes free of organellar contaminants.
RESUMO
The plastid and cytosolic isozymes of the dimeric enzyme phosphoglucose isomerase (EC 5.3.1.9) from spinach (Spinacia oleracea) and cauliflower (Brassica oleracea) were purified to apparent homogeneity. The isozymes from sunflower (Helianthus annuus) and Clarkia xantiana were partially purified. When subunits from two electrophoretically distinguishable cytosolic isozymes, either from the same or from different species, were dissociated and allowed to reassociate in each other's presence, an active hybrid enzyme, consisting of one subunit of each type, was formed in addition to the two original homodimers. Active hybrid enzymes were also formed by dissociation and reassociation of plastid isozymes. Hybrid molecules were not produced between the plastid and cytosolic subunits, suggesting that they are not able to bind with each other. Additional differences between the plastid and cytosolic isozymes are described.
RESUMO
Using enzymological and immunological methods we have investigated the relationship between chalcone synthase and the A locus, a major gene involved in the control of anthocyanin expression in pea (Pisum sativum L.) flowers. Pea plants containing the dominant allele A usually synthesize anthocyanins in the petal tissue, whereas plants homozygous for the a allele do not produce anthocyanins. We sought to determine whether or not the A locus also controlled the presence or absence of chalcone synthase, the first enzyme of the flavonoid pathway in the flowers of three genetic lines (A, purple-violet flowers; A,am, white flowers with sometimes pink edges; and a, white flowers). Chalcone synthase was found to be present in all three genetic lines by enzyme activity measurement, indirect enzyme-linked immunosorbent assay (ELISA), and Western blotting. Spectroscopic investigations showed that only the genetic lines A and A,am contained anthocyanins and flavonol glycosides, respectively, in the flowers; line a accumulated p-coumaric acid or its derivatives. These data suggest that the A locus in Pisum is not the structural gene for chalcone synthase and it does not appear to regulate the expression of this enzyme.
Assuntos
Aciltransferases/genética , Antocianinas/metabolismo , Genes , Mutação , Plantas/genética , Antocianinas/análise , Ensaio de Imunoadsorção Enzimática , Plantas/metabolismoRESUMO
Chalcone synthase was isolated from illuminated buckwheat (Fagopyrum esculentum M.) hypocotyls and purified to electrophoretic homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis using (NH)4SO4 fractionation, gel filtration on AcA 44, ion exchange chromatography on DEAE-Bio-Gel, and HPLC on hydroxylapatite. The properties of the enzyme were pH optimum, 8.0; Mr approximately 83,000 +/- 1000; Mr subunit, approximately 41,500 +/- 500; isoelectric point, pH 5.2; Km, 1 X 10(-6)M for malonyl-CoA, and 0.6 X 10(-6) M for p-coumaryl-CoA. Buckwheat chalcone synthase used p-coumaryl-CoA as substrate and also utilized caffeyl-CoA and ferulyl-CoA at 20 and 80%, respectively, of the rate of p-coumaryl-CoA in the chalcone synthase reaction. Antibodies against the buckwheat chalcone synthase were developed in a New Zealand white rabbit and characterized for specificity by enzyme-linked immunosorbent assay, Ouchterlony double immunodiffusion, and Western blotting.
Assuntos
Aciltransferases/isolamento & purificação , Anticorpos/isolamento & purificação , Grão Comestível/enzimologia , Aciltransferases/imunologia , Animais , Formação de Anticorpos , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Imunodifusão , Cinética , Luz , CoelhosRESUMO
DNA restriction endonuclease fragment patterns corresponding to both the rbcS and cab multigene families of pea are each shown to segregate as single Mendelian units in the F(2) progeny of two separate crosses. All of the observed variation in each of the multigene families is thus organized on the chromosome in a tightly linked complex. Linkage relationships between both multigene families and an array of morphological and isozyme markers establish the location of the rbcS and cab gene clusters on pea chromosomes 5 and 2, respectively. Our results, which indicate a high level of DNA restriction fragment length polymorphism in pea, suggest sufficient variation to permit the construction of a highly detailed linkage map.
RESUMO
A simple genetic basis for the red/yellow skincolor polymorphism in apple was verified using DNA markers. Bulked segregant analysis identified one 10-base oligomer that generated different fragments in each of the bulks. After testing the primer in four populations, two fragments were found to be associated with red skin color and another two fragments associated with yellow skin color. Three of the fragments (1160, 1180, and 1230 bp) were partly sequenced and found to share high sequence homology, suggesting these were generated from the same locus. A pair of universal primers were designed to amplify the fragments. In the 'Rome Beauty' x 'White Angel' population, two fragments were associated with red skin color; one fragment designated as A(1) (1160 bp) was from 'Rome Beauty' and another fragment (A(2), 1180 bp) was from 'White Angel'. Progeny possessing both fragments, or either one, had red fruit. Both parents displayed an alternate fragment, a(1) (1230 bp), associated with yellowskinned fruit. In three other crosses tested, only fragment A(1) co-segregated with red skin color; two fragments, a(1) and a(2) (1230 bp and 1320 bp), were associated with yellow skin color. Our results are consistent with the hypothesis that the red/yellow dimorphism is controlled by a monogenic system with the presence of the red anthocyanin pigmentation being dominant. There was no indication that other modifier genes could reverse the effect of the locus (R f ) linked to the markers. Examination of amplification products in 56 apple cultivars and advanced breeding selections demonstrated that the universal primers could be used to correctly predict fruit skin color in most cases.
RESUMO
The zinc-binding long-chain alcohol dehydrogenases from plants and animals exhibit a considerable level of amino acid sequence conservation. While the functional importance of many of the conserved residues is known, the role of others has not yet been determined. We have identified a naturally occurring Adh-1 allele in the legume Phaseolus acutifolius with several unusual characteristics. Individuals homozygous for this allele, Adh-1 CN, possess a single isozyme starch gel electrophoretic pattern suggestive of a null allele, and exhibit ADH enzyme activity levels ca. 60% lower than the standard wild-type Adh-1F line. Interestingly, analysis of Adh-1CN homozygotes on an alternative gel system indicates that Adh-1CN does encode a polypeptide capable of forming functional homo- and heterodimers. However, the levels of ADH activity displayed by these isozymes are far lower than those observed for the corresponding wild type ADH-1F isozymes. Dialysis experiments indicate that isozymes containing the ADH-1CN polypeptide are inactivated by slightly acidic conditions, which may explain the apparent null phenotype on starch gels. Elevated temperatures cause a similar loss of enzyme activity. The deduced amino acid sequences of ADH-1CN and ADH-1F were obtained from their corresponding cDNA clones, and the only significant difference detected between the two is a single amino acid replacement substitution. Residue 144 is occupied by phenylalanine in the ADH-1F polypeptide, whereas serine occupies this position in the ADH-1CN polypeptide. The proximity of residue 144 to the catalytic zinc in the substrate-binding pocket, coupled with the fact that it is integral to a defined hydrophobic core of the ADH polypeptide, may explain the observed disruptive effect that the serine substitution has on both the activity and stability of the ADH-1CN polypeptide. It also provides an explanation for the maintenance of phenylalanine or the structurally similar tyrosine at this residue in Zn-binding long-chain ADHs.
Assuntos
Álcool Desidrogenase/química , Fabaceae/enzimologia , Isoenzimas/química , Fenilalanina , Plantas Medicinais , Serina , Álcool Desidrogenase/genética , Álcool Desidrogenase/isolamento & purificação , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Primers do DNA , DNA Complementar/química , DNA de Plantas/genética , Eletroforese em Gel de Amido , Estabilidade Enzimática , Genes de Plantas , Homozigoto , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Substâncias Macromoleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Homologia de Sequência de AminoácidosRESUMO
A lectin gene family is located on linkage group 7 in pea. The lectin genes are arranged as a cluster, with no recombination observed within the multigene family. A lectin-like cDNA clone, pEA207, and eight DNA fragments generated by random priming also were mapped in the region of the lectin genes. None of the known pea mutants altering Rhizobium leguminosarum strain specificity map to this region of the genome, and therefore their altered specificities appear not to be directly produced by mutations in the lectin genes.
Assuntos
Mapeamento Cromossômico , Fabaceae/genética , Lectinas/genética , Mutação , Plantas Medicinais , Rhizobium leguminosarum/fisiologia , Sequência de Bases , Primers do DNA , Fabaceae/microbiologia , Genes de Plantas , Ligação Genética , Dados de Sequência Molecular , Família Multigênica , Lectinas de Plantas , Especificidade da EspécieRESUMO
Segregating allozyme and DNA polymorphisms were used to construct a preliminary linkage map for faba bean. Two F2 populations were analyzed, the most informative of which was segregating for 66 markers. Eleven independently assorting linkage groups were identified in this population. One of the groups contained the 45s ribosomal array and could be assigned to the large metacentric chromosome I on which the nucleolar organizer region is located. This linkage group also contained two isozyme loci, Est and Tpi-p, suggesting that it may share some homology with chromosome 4 of garden pea on which three similar markers are syntenic. Additional aspects of the map and the extent of coverage of the total nuclear genome are discussed.