Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 229(1): 296-307, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32762047

RESUMO

The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.


Assuntos
Ecossistema , Nitrogênio , Pradaria , Folhas de Planta , Plantas , Poaceae , Solo
2.
Ying Yong Sheng Tai Xue Bao ; 30(11): 3903-3910, 2019 Nov.
Artigo em Zh | MEDLINE | ID: mdl-31833704

RESUMO

Nematodes, occupying multiple trophic levels in the food web, play important roles in energy flow and nutrient cycling. Most of Chinese natural grasslands have been degraded due to long-term unreasonable utilization, such as over-grazing. External nutrient input is an important way to restore the ecological function of degraded grasslands. The main and intertative effects of nitrogen and phosphorus inputs on soil nematode abundance, trophic group composition and community structure were studied in the grasslands in Xilingol League of Inner Mongolia. Totally, 38 genera of nematodes were recorded. Tylencholaimus, Aphelenchoides, Thonus, and Scutylenchus were dominant genera in this degraded grassland. Nitrogen input decreased total abundances of soil nematodes, and that of omnivores-carnivorous nematodes and plant-feeding nematodes. Phosphorus input increased total abundances of soil nematodes, and that of fungal-feeding nematodes, omnivores-carnivorous nematodes, and plant-feeding nematodes. Nitrogen input inhibited the positive effects of phosphorus input on the abundances of total nematodes, omnivores-carnivorous nematodes and plant-feeding nematodes. Nutrient inputs had no effect on nematode diversity, which would be resulted from the stable plant community. Nitrogen input significantly increased nematode maturity index, decreased plant parasitic nematode maturity index (PPI), and greatly alleviated the negative effects of phosphorus input on PPI and Wasilewska index, indicating that nitrogen input could improve soil health condition and the stability of nematodes community. Our results would help improve our understanding of the effects of nutrient inputs on degraded grassland ecosystem from a soil biotic perspective.


Assuntos
Nematoides , Solo , Animais , China , Ecossistema , Pradaria , Nitrogênio , Fósforo
3.
Ying Yong Sheng Tai Xue Bao ; 30(9): 2992-2998, 2019 Sep.
Artigo em Zh | MEDLINE | ID: mdl-31529874

RESUMO

Long-term overuse of grasslands results in quantitative and qualitative decline of forage yield. Nutrient supplementation is a key strategy to improve forage yield. While mounting evidence showed that nitrogen (N) supplementation can increase forage yield, little is known about its impacts on forage quality. To understand the effects of N supplementation on forage quality at the community level, we carried out a field experiment in the meadow steppe of Hulunbuir. Our results showed that N supplementation significantly increased forage yield by 23%, which was mainly due to positive responses of perennial rhizomatous grass. The yield of other plant functional groups showed neutral response to N supplementation. The concentrations of crude protein, crude fat, and crude fiber varied significantly among different plant functional groups. Nitrogen supplementation significantly enhanced the concentration of crude protein in rhizomatous grass, bunchgrass, legume, and sedge. It enhanced the content of crude fat in rhizomatous grass but with no effect on other functional groups. Nitrogen supplementation had no effect on the concentration of crude fibre in all functional groups. At the community level, N supplementation significantly increased the concentrations of crude protein and crude fat. Our results are important for understanding the responses of forage production in meadow steppe under the scenarios of N enrichment.


Assuntos
Pradaria , Nitrogênio , Poaceae , China , Fertilizantes
4.
Sci Total Environ ; 666: 887-893, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30818212

RESUMO

AIMS: The stoichiometric characteristics of plant communities are important controller for several fundamental ecological processes. The effects of environmental changes on community stoichiometric characteristics are driven by intra- and inter-specific variation. However, the relative importance of both pathways has seldom been empirically examined. METHODS: We quantified the relative contribution of intra- and inter-specific variation to the changes of community nitrogen (N) and phosphorus (P) concentrations after seven-year factorial N addition and mowing treatments in a semi-arid grassland of northern China. RESULTS: Nitrogen addition significantly increased community N and P concentrations and N:P ratio. Mowing significantly increased community N concentration and N:P. Intra-specific variation contributed more than inter-specific variation to the total variability of all the nutritional and stoichiometric characteristics, with intra-specific variation accounting for 68%, 70%, and 75% of the total variation in community-level N, P, and N:P, respectively. Negative covariations between the contribution of intra- and inter-specific variation occurred for community N and P concentrations. Further, N addition and mowing interacted to affect the impacts of intra- and inter-specific variation on community N concentration and N:P stoichiometry. CONCLUSIONS: Our results highlight different ways of trait selection for N addition and mowing treatments. Interactions between those two factors make it more difficult to accurately predict the responses of plant-mediated biogeochemical cycles under co-occurrence of environmental changes.


Assuntos
Fertilizantes/análise , Pradaria , Nitrogênio/metabolismo , Plantas/metabolismo , China , Especificidade da Espécie
5.
PLoS One ; 9(3): e90057, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594654

RESUMO

Plant nitrogen (N) use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affected by both natural and anthropogenic disturbances, such as prescribed fire in the grassland. We examined the effects of N addition (5.25 g N m(-2) yr(-1)) and prescribed fire (annual burning) on plant N concentrations and N use characters at both species and community levels in a temperate steppe of northern China. We found that N addition and fire independently affected soil N availability and plant N use traits. Nitrogen addition increased aboveground net primary productivity (ANPP), inorganic N, and N uptake, decreased N response efficiency (NRE), but did not affect biomass-weighed N concentrations at community level. Prescribed fire did not change the community level N concentrations, but largely decreased N uptake efficiency and NRE. At the species level, the effects of N addition and fire on plant N use were species-specific. The divergent responses of plant N use at community and species levels to N addition and fire highlight the importance of the hierarchical responses of plant N use at diverse biological organization levels to the alteration of soil N availability. This study will improve our understanding of the responses of plant-mediated N cycling to global change factors and ecosystem management strategies in the semiarid grasslands.


Assuntos
Nitrogênio/administração & dosagem , Plantas/metabolismo , Nitrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA