Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Fish Shellfish Immunol ; 151: 109715, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909637

RESUMO

Red-spotted grouper nervous necrosis virus (RGNNV) is a major viral pathogen of grouper and is able to antagonize interferon responses through multiple strategies, particularly evading host immune responses by inhibiting interferon responses. Ovarian tumor (OTU) family proteins are an important class of DUBs and the underlying mechanisms used to inhibit interferon pathway activation are unknown. In the present study, primers were designed based on the transcriptome data, and the ovarian tumor (OTU) domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) and OTUB2 genes of Epinephelus coioides (EcOTUB1 and EcOTUB2) were cloned and characterized. The homology alignment showed that both EcOTUB1 and EcOTUB2 were most closely related to E. lanceolatus with 98 % identity. Both EcOTUB1 and EcOTUB2 were distributed to varying degrees in grouper tissues, and the transcript levels were significantly up-regulated following RGNNV stimulation. Both EcOTUB1 and EcOTUB2 promoted replication of RGNNV in vitro, and inhibited the promoter activities of interferon stimulated response element (ISRE), nuclear transcription factors kappaB (NF-κB) and IFN3, and the expression levels of interferon related genes and proinflammatory factors. Co-immunoprecipitation experiments showed that both EcOTUB1 and EcOTUB2 could interact with TRAF3 and TRAF6, indicating that EcOTUB1 and EcOTUB2 may play important roles in interferon signaling pathway. The results will provide a theoretical reference for the development of novel disease prevention and control techniques.

2.
Fish Shellfish Immunol ; 151: 109684, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852788

RESUMO

Singapore grouper iridovirus (SGIV) is a large double-stranded DNA virus that has caused significant economic losses to the grouper aquaculture industry. So far, the structure and function of SGIV proteins have been successively reported. In the present paper, the protein of SGIV VP146 was cloned and identified. VP146 was whole-cell distributed in GS cells. VP146 promoted SGIV replication and inhibited the transcription of interferon-related genes as well as pro-inflammatory cytokines in GS cells. In addition, VP146 was involved in the regulation of the cGAS-STING signaling pathway, and decreased cGAS-STING induced the promoter of ISRE and NF-κB. VP146 interacted with the proteins of cGAS, STING, TBK1, and IRF3 from grouper, but did not affect the binding of grouper STING to grouper TBK1 and grouper IRF3. Interestingly, grouper STING was able to affect the intracellular localization of VP146. Four segment structural domains of grouper STING were constructed, and grouper STING-CTT could affect the intracellular localization of VP146. VP146 had no effect on the self-binding of EcSITNG, nor on the binding of EcSTING to EcTBK1 and EcIRF3. Together, the results demonstrated that SGIV VP146 modulated the cGAS-STING signaling pathway to escape the interferon immune response.

3.
Fish Shellfish Immunol ; 144: 109304, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103849

RESUMO

PACT (interferon-inducible double-stranded RNA-dependent protein kinase activator A) is a cellular protein which can activate PKR in dsRNA-independent manner. However, the role of PACT in fish virus infection remains largely unknown. In this study, a PACT homologue from grouper (Epinephelus coioides)(EcPACT) was cloned and characterized. The open reading frame of EcPACT has a full length of 924 bp and encodes a protein of 307 amino acids with a predicted molecular weight of 33.29 kDa. Similar to mammals, EcPACT contains three dsRBD domains. EcPACT shares 99.67 % homology with E. lanceolatus. Real-time fluorescence quantitative PCR results showed that EcPACT mRNA was widely expressed in all tissues and abundantly expressed in brain, blood, head kidney and kidney. In addition, SGIV and RGNNV infection significantly upregulated the transcript levels of EcPACT. Subcellular localization analysis showed that EcPACT was mainly distributed in the nucleus. Overexpression of EcPACT inhibited the replication of SGIV and RGNNV in vitro and positively regulated the expression of interferon (IFN) and pro-inflammatory factors. The results provide a better understanding of the relationship between PACT and viral infection in fish.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Viroses , Animais , Sequência de Aminoácidos , Proteínas de Peixes/genética , Proteínas de Peixes/química , Bass/genética , Interferons/genética , Infecções por Vírus de DNA/genética , Imunidade Inata/genética , Filogenia , Mamíferos
4.
Fish Shellfish Immunol ; 141: 109034, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640124

RESUMO

The spotted knifejaw (Oplegnathus punctatus) has recently emerged as a highly economically significant farmed fish in China. However, due to increasing environmental pollution and breeding density, a range of infectious diseases, including the iridovirus pathogen, have begun to spread widely. In this study, we isolated and identified a strain of Megalocytivirus, SKIV-TJ, from cultured spotted knifejaw in Tianjin, China. We observed significant cytopathic effects (CPE) in SKIV-TJ-infected spotted knifejaw brain (SKB) cells, and electron microscopy showed numerous virus particles in the cytoplasm of SKB cells 6 days post-infection. The annotated complete genome of SKIV-TJ (GenBank accession number ON075463) contained 112,489 bp and 132 open reading frames. Based on the multigene association evolutionary tree using 26 iridovirus core genes, SKIV-TJ was found to be most closely related to Rock bream iridovirus (RBIV). Cumulative mortality of spotted knifejaw infected with SKIV-TJ reached 100% by day 9. A transcriptomic analysis were conducted and a total of 5517 differentially expressed genes were identified, including 2757 upregulated genes and 2760 downregulated genes. The upregulated genes were associated with viral infection and immune signaling pathways. Our findings provide a valuable genetic resource and a deeper understanding of the immune response to SKIV infection in spotted knifejaw.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Perciformes , Animais , Virulência , Perciformes/genética , Peixes/genética , Infecções por Vírus de DNA/veterinária
5.
Fish Shellfish Immunol ; 141: 109067, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689226

RESUMO

As one of the important members of the autophagy-related protein family, Atg14 plays a key role in the formation and maturation of autophagosomes. However, little is known about the potential roles of fish Atg14 and its roles in virus infection. In the present study, the homolog of Atg14 (EcAtg14) from the orange-spotted grouper (Epinephelus coioides) was cloned and characterized. The open reading frame (ORF) of EcAtg14 consists of 1530 nucleotides, encoding 509 amino acids, with a predicted molecular weight of 56.9 kDa. EcAtg14 was distributed in all tested tissues, with higher expression in liver, blood and spleen. The expression of EcAtg14 was increased in grouper spleen (GS) cells after Singapore grouper iridovirus (SGIV) infection. EcAtg14 was distributed in the cytoplasm of GS cells. Overexpression of EcAtg14 promoted SGIV replication in GS cells and inhibited IFN3, ISRE and NF-κB promoter activities. Co-immunoprecipitation results showed that there was an interaction between EcAtg14 and EcBeclin. EcAtg14 also promoted the synthesis of LC3-II in GS cells. These findings provide a basis for understanding the innate immune mechanism of grouper against viral infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Singapura , Proteínas de Peixes/química , Ranavirus/fisiologia , Imunidade Inata/genética , Filogenia
6.
Fish Shellfish Immunol ; 142: 109168, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844852

RESUMO

As a key regulator of the innate immune system, FoxO1 has a variety of activities in biological organisms. In the present study, grouper FoxO1 (EcFoxO1) was cloned and the antiviral activity in red grouper neuron necrosis virus (RGNNV) and Singapore grouper iridescent virus (SGIV) was examined. The open reading frame (ORF) of EcFoxO1 contains 2,034 base pairs that encode a protein of 677 amino acids with a predicted molecular weight of 73.21 kDa. EcFoxO1 was shown to be broadly distributed in healthy grouper tissues, and was up-regulated in vitro in response to stimulation by RGNNV and SGIV. EcFoxO1 has a whole-cell distribution in grouper spleen (GS) cells. EcFoxO1 decreased the replication of RGNNV and SGIV, and activated interferon (IFN) 3, IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB) promoter activities. EcFoxO1 could interact with EcIRF3. Together, the results demonstrated that EcFoxO1 might be an important regulator of grouper innate immune response against RGNNV and SGIV infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Regulação da Expressão Gênica , Proteínas de Peixes/química , Sequência de Aminoácidos , Ranavirus/fisiologia , Imunidade Inata/genética , Antivirais , Neurônios
7.
Fish Shellfish Immunol ; 136: 108709, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36972841

RESUMO

Nervous necrosis virus (NNV) is one of the most important fish viral pathogens infecting more than 120 fish species worldwide. Due to the mass mortality rates often seen among larvae and juveniles, few effective vaccines against NNV were developed up to now. Here, the protective effect of recombinant coat protein (CP) from red-spotted grouper nervous necrosis virus (RGNNV) fused with grouper ß-defensin (DEFB) as an oral vaccine was evaluated using Artemia as a biocarrier delivery system in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Feeding with Artemia encapsulated with E. coli expressing control vector (control group), CP, or CP-DEFB showed no obvious side effects on the growth of groupers. ELISA and antibody neutralization assay showed that CP-DEFB oral vaccination group induced higher anti-RGNNV CP specific antibodies and exhibited higher neutralization potency than the CP and control group. Meanwhile, the expression levels of several immune and inflammatory factors in the spleen and kidney after feeding with CP-DEFB were also significantly increased compared with the CP group. Consistently, after challenge with RGNNV, groupers fed CP-DEFB and CP exhibited 100% and 88.23% relative percentage survival (RPS), respectively. Moreover, the lower transcription levels of viral genes and milder pathological changes in CP-DEFB group were detected compared with the CP and control group. Thus, we proposed that grouper ß-defensin functioned as an efficient molecular adjuvant for an improved oral vaccine against nervous necrosis virus infection.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Vacinas Virais , beta-Defensinas , Animais , beta-Defensinas/genética , Infecções por Vírus de RNA/prevenção & controle , Infecções por Vírus de RNA/veterinária , Escherichia coli , Adjuvantes Imunológicos/farmacologia , Proteínas Recombinantes , Nodaviridae/fisiologia , Necrose , Proteínas de Peixes/genética
8.
Fish Shellfish Immunol ; 140: 108990, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558148

RESUMO

Singapore grouper iridovirus (SGIV) is a highly pathogenic Iridoviridae that causes hemorrhage and spleen enlargement in grouper. Despite previous genome annotation efforts, many open reading frames (ORFs) in SGIV remain uncharacterized, with largely unknown functions. In this study, we identified the protein encoded by SGIV ORF122, now referred to as VP122. Notably, overexpression of VP122 promoted SGIV replication. Moreover, VP122 exhibited antagonistic effects on the natural antiviral immune response through the cGAS-STING signaling pathway. It specifically inhibited the cGAS-STING-triggered transcription of various immune-related genes, including IFN1, IFN2, ISG15, ISG56, PKR, and TNF-α in GS cells. Additionally, VP122 significantly inhibited the activation of the ISRE promoter mediated by EccGAS and EcSTING but had no effect on EccGAS or EcSTING alone. Immunoprecipitation and Western blotting experiments revealed that VP122 specifically interacts with EcSTING but not EccGAS. Notably, this interaction between VP122 and EcSTING was independent of any specific domain of EcSTING. Furthermore, VP122 inhibited the self-interaction of EcSTING. Interestingly, VP122 did not affect the recruitment of EcTBK1 and EcIRF3 to the EcSTING complex. Collectively, our results demonstrate that SGIV VP122 targets EcSTING to evade the type I interferon immune response, revealing a crucial role for VP122 in modulating the host-virus interaction.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Interferon Tipo I , Iridovirus , Ranavirus , Animais , Singapura , Proteínas de Peixes/genética , Clonagem Molecular , Ranavirus/fisiologia , Imunidade , Interferon Tipo I/genética
9.
J Fish Dis ; 46(7): 767-777, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36966380

RESUMO

Cells are important in the study of virus isolation and identification, viral pathogenic mechanisms and antiviral immunity. The spotted knifejaw (Oplegnathus punctatus) is a significant farmed fish in China that has been greatly affected by diseases in recent years. In this study, a new cell line derived from the spotted knifejaw brain (SKB) was established and characterized. SKB cells multiplied well in Leibovitz's L-15 medium supplemented with 10% fetal bovine serum at 28°C. Chromosome analysis revealed that modal chromosome number was 48 for SKB. SKB cells exhibit susceptibility to several fish viruses, such as a largemouth bass virus, red grouper nervous necrosis virus (RGNNV), infectious spleen and kidney necrosis virus (ISKNV), Singapore grouper iridovirus (SGIV) and spotted knifejaw iridovirus isolate (SKIV-TJ), as shown by cytopathic effect and increased viral titers. Electron microscopy results showed that the cytoplasm contained a large number of vacuoles, and many virus particles existed at the edge of the vacuoles in RGNNV-infected cells and numerous viral particles were scattered throughout the cytoplasm in both ISKNV- and SKIV-TJ-infected cells. These results suggest that SKB is an ideal tool for studying host-virus interactions and potential vaccine development.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Animais , Encéfalo , Linhagem Celular , Proteínas de Peixes/genética , Infecções por Vírus de DNA/veterinária
10.
Fish Shellfish Immunol ; 131: 84-94, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206994

RESUMO

Singapore grouper iridovirus (SGIV) with high pathogenicity can cause great economic losses to aquaculture industry. Thus, it is of urgency to find effective antiviral strategies to combat SGIV. Curcumin has been demonstrated effective antiviral activity on SGIV infection. However, the molecular mechanism behind this action needs to be further explanations. In view of the fact that apoptosis (type I programmed cell death) and autophagy (type II programmed cell death) were key regulators during SGIV infection, we aimed to investigate the relevance between antiviral activity of curcumin and SGIV-associated programmed and clarify the role of potential signaling pathways. Our results showed that curcumin suppressed SGIV-induced apoptosis. At the same time, the activities of caspase-3/8/9 and activating protein-1 (AP-1), P53, nuclear factor-κB (NF-ΚB) promoters were inhibited. Besides, the activation of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen activate protein kinase (p38 MAPK) signal pathways were suppressed in curcumin-treated cells. On the other hand, curcumin down-regulated protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway to promote autophagy representing by increased LC3 II and Beclin1 expression. Curcumin also hindered the transition of cells from G1 to S phase, as well as down-regulating the expression of CyclinD1. Our findings revealed the resistance curcumin induced to the effects of DNA virus on cell apoptosis and autophagy and the insights gained from this study may be of assistance to understand the molecular mechanism of curcumin against DNA virus infection.


Assuntos
Bass , Curcumina , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Iridovirus/fisiologia , Curcumina/farmacologia , Singapura , Ranavirus/fisiologia , Infecções por Vírus de DNA/veterinária , Apoptose , Autofagia , Antivirais/farmacologia , Mamíferos
11.
Fish Shellfish Immunol ; 124: 164-173, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35398221

RESUMO

Transforming growth factor-ß activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase family. It is an upstream factor of the IκB kinase, which activates IKKα and IKKß. TAK1 is a key factor in the induction of nuclear factor κB (NF-κB) and plays a crucial role in the activation of inflammatory responses. However, the roles of TAK1 during viral infection in teleost fish are largely unknown. In this study, we cloned a TAK1 homolog (HgTAK1) from the hybrid grouper (Epinephelus fuscoguttatus♂ × Epinephelus lanceolatus♀). The open reading frame of HgTAK1 consists of 1728 nucleotides encoding 575 amino acids, and the predicted molecular weight is 64.32 kDa HgTAK1 has an S_TKc domain, which consists of a serine/threonine protein kinase and a catalytic domain. Expression pattern analysis showed that HgTAK1 was distributed in all tested tissues, with abundant contents in the heart, head kidney, and blood. Additionally, HgTAK1 was distributed in the cytoplasm of grouper spleen (GS) cells. After Singapore grouper iridovirus (SGIV) infection, the expression of HgTAK1 increased in GS cells. Overexpression of HgTAK1 could promote the replication of SGIV in GS cells and inhibit the activation of NF-κB and IFN stimulated response elements (ISRE) in reporter assay. When co-expressed with IRF3 or HgIRF7 in GS cells, HgTAK1 obviously down-regulated IRF3- or IRF7-mediated the NF-κB and ISRE promoter induction. The interaction between HgTAK1 and IRF3 or IRF7 has been identified by co-immunoprecipitation assay. These findings provide a basis for understanding the innate immune mechanism of the grouper response to viral infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Imunidade Inata/genética , NF-kappa B/metabolismo , Ranavirus/fisiologia , Alinhamento de Sequência , Singapura
12.
Fish Shellfish Immunol ; 121: 478-486, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35085738

RESUMO

T-cell intracellular antigen (TIA)-1 is a prion-related RNA-binding protein involved in splicing and translational repression, and regulates translation in response to stress conditions by isolating target mRNAs in stress granules (SGs). However, little is known about the potential roles of fish TIA-1 and how it works in viral infection. In this study, the TIA-1 (EcTIA-1) homolog from orange-spotted grouper (Epinephelus coioides) was cloned and characterized. The open reading frame (ORF) sequence of EcTIA-1 encoded a 388 amino acid protein with predicted molecular mass of 42.73 kDa. EcTIA-1 contains three conserved domains of RNA recognition motif (RRM) that may interact with RNA via its second and third RRMs. Overexpression of EcTIA-1 inhibited red-spotted grouper nervous necrosis virus (RGNNV) replication and positively regulated interferon immune response, which was increased by knockdown of EcTIA-1. RGNNV induced formation of SGs in cells with EcTIA-1 overexpression. These results provide a novel insight into understanding the roles of fish TIA-1 in response to RNA viruses.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Infecções por Vírus de RNA , Antígeno-1 Intracelular de Células T/imunologia , Animais , Bass/genética , Bass/imunologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata , Necrose , Nodaviridae , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/veterinária , Antígeno-1 Intracelular de Células T/genética
13.
Fish Shellfish Immunol ; 131: 549-558, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36273516

RESUMO

Glycogen synthase kinase 3ß (GSK3ß), a serine/threonine protein kinase, is a crucial regulator of several signaling pathways and plays a vital role in cell proliferation, growth, apoptosis, and immune responses. However, the role of GSK3ß during viral infection in teleosts remains largely unknown. In the present study, a GSK3ß homologue from Epinephelus coioides (EcGSK3ß) was cloned and characterized. The open reading frame of EcGSK3ß consists of 1323 bp, encoding a 440 amino acid protein, with a predicted molecular mass of 48.23 kDa. Similar to its mammalian counterpart, EcGSK3ß contains an S_TKc domain. EcGSK3ß shares 99.77% homology with the giant grouper (Epinephelus lanceolatus). Quantitative real-time PCR analysis indicated that EcGSK3ß mRNA was broadly expressed in all tested tissues, with abundant expression in the skin, blood, and intestines. Additionally, the expression of EcGSK3ß increased after Singapore grouper iridovirus (SGIV) infection in grouper spleen (GS) cells. Intracellular localization analysis demonstrated that EcGSK3ß is mainly distributed in the cytoplasm. EcGSK3ß overexpression promoted SGIV replication during viral infection in vitro. In contrast, silencing of EcGSK3ß inhibited SGIV replication. EcGSK3ß significantly downregulated the activities of interferon-ß, interferon-sensitive response element, and NF-κB. Taken together, these findings are important for a better understanding of the function of GSK3ß in fish and reveal its involvement in the host response to viral immune challenge.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Iridovirus/fisiologia , Glicogênio Sintase Quinase 3 beta/genética , Singapura , Proteínas de Peixes/química , Ranavirus/fisiologia , Imunidade Inata/genética , Filogenia , Mamíferos/metabolismo
14.
Fish Shellfish Immunol ; 123: 172-181, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35276350

RESUMO

Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are major signal transducers for the TNF and interleukin-1/Toll-like receptor superfamilies that transduce signals from various immune receptors. To investigate the interaction of TRAF3 and other proteins in signaling pathways and to identify its antiviral function in teleosts, we cloned and characterized a TRAF3 homolog from orange-spotted grouper (Epinephelus coioides) (EcTRAF3). The open reading frame of EcTRAF3 consists of 1767 base pairs encoding a 588 amino acid protein, and the predicted molecular mass is 66.71 kDa EcTRAF3 shares 99.83% identity with TRAF3 of Epinephelus lanceolatus. Expression analysis revealed that EcTRAF3 was broadly distributed in examined tissues and was up-regulated under polyinosinic-polycytidylic acid and red-spotted grouper nervous necrosis virus (RGNNV) stimulation in vivo. EcTRAF3 was identified as a cytosolic protein based on fluorescence microscopy analysis. Overexpression of EcTRAF3 inhibited RGNNV replication in grouper spleen cells, and it interacted with the coat protein of RGNNV. Overexpression of EcTRAF3 also induced the activation of interferon ß (IFN-ß), IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB). EcTRAF3 co-transfected with Stimulator of Interferon Genes (STING) of grouper (EcSTING) induced a significantly higher level of IFN-ß promoter activity. Moreover, EcTRAF3 interacted with EcSTING, implying that EcTRAF3 may function as an enhancer in EcSTING-mediated signaling. Taken together, our results suggest that EcTRAF3 negatively regulates the RGNNV-induced cellular antiviral response and plays an important role in the immune response system of fish.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Sequência de Aminoácidos , Animais , Antivirais/metabolismo , Proteínas de Peixes/química , Regulação da Expressão Gênica , Imunidade Inata/genética , Interferon beta/genética , Nodaviridae/fisiologia , Transdução de Sinais , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo
15.
Fish Shellfish Immunol ; 120: 470-480, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34933091

RESUMO

Heat shock proteins (Hsps) are important for maintaining protein homeostasis and cell survival. In this study, Hsp27 of Epinephelus coioides, an economically important marine fish in China and Southeast Asian countries, was characterized. E. coioides Hsp27 contains the consered ACD_HspB1_like domain and three p38 MAPK phosphorylation sites, located at Thr-13, Thr-60 and Ser-167. E. coioides Hsp27 was distributed in both the cytoplasm and nucleus, its mRNA was detected in all 14 tissues examined, and its expression was up-regulated after challenge with Singapore grouper iridovirus (SGIV), an important E. coioides pathogen. Over-expression of E. coioides Hsp27 significantly upregulated the expressions of the key SGIV genes (VP19, LITAF, MCP, and ICP18), downgraded the expressions of the E. coioides immune factors (IRF3, IRF7, ISG15, and TRAF6) and proinflammatory factors (TNF-α, IL-8), downgraded the activation of nuclear factor kappa-B (NF-κB) and activator protein-1 (AP-1), and substantially inhibited the cell apoptosis induced by SGIV infection. These data illustrated that E. coioides Hsp27 might be involved in SGIV infection by negatively regulating the innate immune response.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes/imunologia , Proteínas de Choque Térmico/imunologia , Imunidade Inata , Animais , Apoptose , Bass/imunologia , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Choque Térmico/genética , Iridovirus
16.
Fish Shellfish Immunol ; 115: 7-13, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34062236

RESUMO

Tumor necrosis factor receptor-associated factor 5 (TRAF5) is an intracellular protein that binds to the cytoplasmic portion of tumor necrosis factor receptors and mediates the activation of downstream nuclear factor-kappa B (NF-κB), interferon regulatory factor 3, and mitogen activated protein kinase signaling pathways. Compared with other TRAF proteins, TRAF5 is largely unknown in teleosts. In the present study, a TRAF5 homologue (HgTRAF5) from the hybrid grouper (Epinephelus fuscoguttatus♂ × Epinephelus lanceolatus♀) was cloned and characterized. The open reading frame of HgTRAF5 consists of 1743 nucleotides encoding a 581 amino acid protein with a predicted molecular mass of 64.90 kDa. Similar to its mammalian counterpart, HgTRAF5 contains an N-terminal RING finger domain, a zinc finger domain, and a C-terminal TRAF domain, including a coiled-coil domain and a MATH domain. HgTRAF5 shares 99.83% identity with giant grouper (Epinephelus lanceolatus) TRAF5. Quantitative real-time PCR analysis indicated that HgTRAF5 mRNA was broadly expressed in all examined tissues. The expression of HgTRAF5 increased after Singapore grouper iridovirus (SGIV) infection in grouper spleen (GS) cells. Intracellular localization analysis demonstrated that the full-length HgTRAF5 protein mainly distributed in the cytoplasm. HgTRAF5 overexpression also promoted SGIV replication during viral infection in vitro. HgTRAF5 significantly promoted the activities of interferon-ß, interferon-sensitive response element, and NF-κB. Taken together, these results are important for a better understanding of the function of TRAF5 in fish and reveal its involvement in the host response to immune challenge by SGIV.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Perciformes/genética , Perciformes/imunologia , Fator 5 Associado a Receptor de TNF/genética , Fator 5 Associado a Receptor de TNF/imunologia , Sequência de Aminoácidos , Animais , Bass , Infecções por Vírus de DNA/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Filogenia , Ranavirus/fisiologia , Alinhamento de Sequência/veterinária , Fator 5 Associado a Receptor de TNF/química
17.
Fish Shellfish Immunol ; 118: 396-404, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34571156

RESUMO

Heat shock protein 40 (Hsp40), a member of Heat shock proteins (Hsps) family, plays a crucial role in regulation of cell proliferation, survival and apoptosis in mammals. In this study, Hsp40, EcHsp40, was identified from Epinephelus coioides, an economically important marine-cultured fish in China and Southeast Asian counties. The full length of EcHsp40 was 2236 bp in length containing a 1026 bp open reading frame (ORF) encoding 341 amino acids, with a molecular mass of 37.88 kDa and a theoretical pI of 9.09. EcHsp40 has two conserved domains DnaJ and DnaJ_C. EcHsp40 mRNA was detected in all tissues examined, and the expression was significantly up-regulated response to challenged with Vibrio alginolyticus or Singapore grouper iridovirus (SGIV), one of the important pathogens of marine fish. EcHsp40 was distributed in both the cytoplasm and nucleus, over-expression of EcHsp40 can inhibit the activity of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), significantly promote SGIV-induced apoptosis, intracellular caspase-3 activity and viral replication, suggesting that the EcHsp40 may play an important role in pathogenic stimulation.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Bass/genética , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Choque Térmico HSP40 , Filogenia , Vibrio alginolyticus
18.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200212

RESUMO

Tumor necrosis factor receptor-associated factors (TRAFs) play important roles in the biological processes of immune regulation, the inflammatory response, and apoptosis. TRAF4 belongs to the TRAF family and plays a major role in many biological processes. Compared with other TRAF proteins, the functions of TRAF4 in teleosts have been largely unknown. In the present study, the TRAF4 homologue (EcTRAF4) of the orange-spotted grouper was characterized. EcTRAF4 consisted of 1413 bp encoding a 471-amino-acid protein, and the predicted molecular mass was 54.27 kDa. EcTRAF4 shares 99.79% of its identity with TRAF4 of the giant grouper (E. lanceolatus). EcTRAF4 transcripts were ubiquitously and differentially expressed in all the examined tissues. EcTRAF4 expression in GS cells was significantly upregulated after stimulation with red-spotted grouper nervous necrosis virus (RGNNV). EcTRAF4 protein was distributed in the cytoplasm of GS cells. Overexpressed EcTRAF4 promoted RGNNV replication during viral infection in vitro. Yeast two-hybrid and coimmunoprecipitation assays showed that EcTRAF4 interacted with the coat protein (CP) of RGNNV. EcTRAF4 inhibited the activation of IFN3, IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB). Overexpressed EcTRAF4 also reduced the expression of interferon (IFN)-related molecules and pro-inflammatory factors. Together, these results demonstrate that EcTRAF4 plays crucial roles in RGNNV infection.


Assuntos
Bass/virologia , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Nodaviridae/fisiologia , Infecções por Vírus de RNA/veterinária , Fator 4 Associado a Receptor de TNF/metabolismo , Replicação Viral , Animais , Bass/genética , Bass/imunologia , Bass/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunidade Inata , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Fator 4 Associado a Receptor de TNF/genética
19.
Fish Shellfish Immunol ; 102: 108-116, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32311458

RESUMO

Tumour necrosis factor receptor-associated factors (TRAFs) are key regulatory proteins in the NF-κB signaling pathways. TRAF2 participates in the activation of both canonical and non-canonical NF-κB pathways, which are crucial for cell inflammation and cell survival. To elucidate its function in teleost fish, TRAF2 homologues of yellow grouper (Epinephelus awoara) and golden pompano (Trachinotus ovatus) have been cloned and characterized in this study. The open reading frame (ORF) of grouper TRAF2 (EaTRAF2) consists of 1563 nucleotides encoding a 521 amino acid protein with a predicted molecular mass of 58.70 kDa. The ORF of golden pompano TRAF2 (ToTRAF2) consists of 1563 nucleotides encoding a 521 amino acid protein with a predicted molecular mass of 58.66 kDa EaTRAF2 and ToTRAF2 share 99.23% and 99.42% identity with orange-spotted grouper (Epinephelus coioides) TRAF2 (EcTRAF2), respectively. Quantitative real-time PCR analysis indicated that the expression of EaTRAF2 was increased in grouper spleen (GS) cells after Red-spotted grouper nervous necrosis virus (RGNNV) infection; while the expression of ToTRAF2 was decreased in golden pompano brain (TOGB) cells after RGNNV infection. Both EaTRAF2 and ToTRAF2 were identified as a cytosolic protein and suggested to be associated with vesicles scattering in the cytoplasm. Both EaTRAF2 and ToTRAF2 enhanced RGNNV replication during viral infection in vitro. Further studies showed that EaTRAF2 and ToTRAF2 overexpression decreased the expression levels of interferon associated cytokines and pro-inflammatory factors. Taken together, these results are important for better understanding of the function of TRAF2 in fish and reveal its involvement in host response to immune challenges in RGNNV.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/imunologia , Sequência de Aminoácidos , Animais , Bass/genética , Bass/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Nodaviridae/fisiologia , Filogenia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Alinhamento de Sequência/veterinária , Fator 2 Associado a Receptor de TNF/química
20.
Fish Shellfish Immunol ; 104: 506-516, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32585359

RESUMO

The TRAF family member-associated nuclear factor (NF)-κB activator (TANK) was first identified as a TRAF-binding protein with both stimulatory and inhibitory properties in host innate immune activation. To elucidate the roles of TANK in teleosts, we cloned and characterized the TANK homologue of orange-spotted grouper (Epinephelus coioides). The open reading frame (ORF) of EcTANK consists of 1026 nucleotides encoding a 342 amino acid protein with a predicted molecular mass of 38.24 kDa. EcTANK shares 89.47% and 88.89% identity with Larimichthys crocea TANK and Lates calcarifer TANK, respectively. EcTANK was distributed in all 11 examined tissues. The expression of EcTANK in the spleen increased after infection with Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV). EcTANK was mainly located in the cytoplasm of grouper spleen cells. EcTANK enhanced SGIV and RGNNV replication during viral infection in vitro. Overexpression EcTANK decreased the expression levels of interferon-associated cytokines and pro-inflammatory factors, and enhanced activation of NF-κB. Taken together, these results suggest that EcTANK may play an important role in antiviral innate immune activation in grouper.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Bass/genética , Bass/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Nodaviridae/fisiologia , Filogenia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Ranavirus/fisiologia , Alinhamento de Sequência/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA