Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(13): 7457-7463, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527909

RESUMO

The discovery of a lead compound is fundamental to herbicide innovation, but the limited availability of valuable lead compounds has hindered their development in recent years. By utilizing the structural diversity-oriented inactive group strategy, 3-(2-pyridyl)-benzothiazol-2-one was identified as a promising lead scaffold for herbicides, starting from benzothiazole which is an inactive moiety commonly found in herbicides such as mefenacet, benazolin, benzthiazuron, and fenthiaprop-ethyl. To investigate the structure-activity relationship (SAR) of these chemicals, a series of 2-(2-oxo-3-pyridyl-benzothiazol-6-yloxy)hexanoic acid derivatives (VI01 ∼ VI28) were synthesized through classical nucleophilic SNAr reaction using halogenated pyridines and 6-methoxybenzothiazole-2-one. The chemical structures of all the title compounds were confirmed by NMR and MS analysis. Petri dish assays indicated that many compounds exhibited potent herbicidal activity against both broad-leaf weeds and grass weeds at 1.0 mg/L. The SAR analysis revealed that the presence of a trifluoromethyl group at the 5-position of pyridine is essential for herbicidal activity. Furthermore, carboxylic esters exhibit higher herbicidal activity compared to carboxylic amides and free acids, and the activity decreased with the extension of the carbon chain. The postemergence herbicidal activity of VI03 against 16 species of weeds was tested by pot experiments in a greenhouse. VI03 demonstrated comparable efficacy in controlling broadleaf weeds and superior efficacy in controlling grass weeds compared to carfentrazone ethyl. The present study has unveiled a novel molecular scaffold exhibiting remarkably potent herbicidal activity. These findings are anticipated to provide valuable insights for the advancement of new herbicides and offer an alternative approach for managing resistant weeds.


Assuntos
Herbicidas , Herbicidas/química , Caproatos , Relação Estrutura-Atividade , Plantas Daninhas , Poaceae
2.
Pest Manag Sci ; 80(6): 2639-2646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38288581

RESUMO

BACKGROUND: The discovery of lead compounds is fundamental to herbicide innovation, yet the limited availability of valuable lead compounds has impeded their progress in recent years. The study presents a novel molecular scaffold that exhibits remarkably potent herbicidal activity. RESULTS: Through a scaffold-hopping strategy, a highly potent lead compound for herbicides, namely 3-(2-pyridinyl)-benzothiazol-2-one, was unexpectedly discovered during attempts to structurally modify haloxyfop, a commercial aryl-oxy-phenoxy-propionate herbicide. To investigate the structure-activity relationship (SAR) of the newly discovered herbicidal chemicals, a series of 2-(2-oxo-3-(pyridin-2-yl)-2,3-dihydrobenzo[d]thiazol-6-yloxy)propanoic acid derivatives, I-01 ~ I-27, were designed and synthesized. SAR analysis revealed that trifluoromethyl at the 5-position of pyridine is crucial for herbicidal activity, whereas additional fluorine or Cl atom at the 3-position of pyridine significantly enhances activity. Carboxylic ester derivatives exhibit superior herbicidal activity compared with amide derivatives. Moreover, the activity of carboxylic ester derivatives decreases with C chain extension, but the introduction of O atoms in the side chain benefits activity enhancement. Pot experiments conducted in a glasshouse demonstrated that I-01 and I-09 exhibited potent postemergence herbicidal activity against broadleaf weeds, and completely inhibited growth of Amaranthus retroflex, Abutilon theophrasti and Portulaca oleracea at a dosage of 75 g ha-1. CONCLUSION: Despite the initial goal of scaffold-hopping not being achieved, we have successfully identified a novel molecular scaffold exhibiting exceptional herbicidal activity, thereby presenting innovative prospects for herbicide development. © 2024 Society of Chemical Industry.


Assuntos
Herbicidas , Plantas Daninhas , Herbicidas/farmacologia , Herbicidas/síntese química , Herbicidas/química , Relação Estrutura-Atividade , Plantas Daninhas/efeitos dos fármacos , Propionatos/farmacologia , Propionatos/síntese química , Propionatos/química
3.
Pest Manag Sci ; 80(7): 3269-3277, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363171

RESUMO

BACKGROUND: In pesticide research, bleaching herbicides have always been a hot topic. Our previous research showed that N-(4-fluorobenzyl)-2-methoxybenzamide is an innovative lead compound for bleaching herbicides. RESULTS: A total of 40 derivatives of picolinamides were prepared and evaluated for their herbicidal activity by Petri dish tests and postemergence trials. The structure-activity relationship (SAR) revealed that introducing electron-withdrawing groups at the 3- or 4-positions of the benzyl significantly enhances herbicidal activity. Furthermore, ZI-04 induced similar symptoms such as bleaching effect in treated weeds and accumulation of biosynthetic precursors for carotenoids as observed with diflufenican. ZI-04 also exhibited significant cross-resistance to diflufenican and had a lower resistance risk than diflufenican. CONCLUSION: N-benzyl-6-methylpicolinamides were discovered as a novel scaffold for bleaching herbicides. The accumulation of phytoene, phytofluene and ζ-Carotene in radish cotyledons, and cross-resistance observed with diflufenican, showed that title compounds can interfere with carotenoid biosynthesis. © 2024 Society of Chemical Industry.


Assuntos
Herbicidas , Ácidos Picolínicos , Herbicidas/farmacologia , Herbicidas/química , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Relação Estrutura-Atividade , Plantas Daninhas/efeitos dos fármacos , Amidas/química , Amidas/farmacologia
4.
Vet Microbiol ; 288: 109943, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113574

RESUMO

O-acetyl-homoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis, which catalyzes the conversion of o-acetyl-homoserine (OAH) to homocysteine. In our previous study, we found that OAHS of Streptococcus suis serotype 2 (SS2) can interact with the porcine blood-brain barrier (BBB) model, but whether OAHS regulates the penetration of BBB during SS2 infection is still unclear. To explore the role of OAHS in SS2 infection, OAHS-deficient SS2 mutant strain (SC19-ΔOAHS) and gene complemental strain (SC19-cΔOAHS) were constructed. Compared to the parent strain, with the loss of oahs, the chain length of SC19-ΔOAHS was shortened, the virulence was significantly reduced, the survival rate of mice infected with SC19-ΔOAHS was obviously increased accompanied by the relieved clinical symptoms. And the survival ability of SC19-ΔOAHS in whole blood was also remarkably decreased. Interestingly, the adhesion of SC19-ΔOAHS to endothelial cells was markedly increased, but the deficiency of OAHS significantly inhibited the strain penetrating BBB both in vivo and in vitro. Most of these phenomena can be reversed by the complemental strain (SC19-cΔOAHS). Further study showed that the deficiency of OAHS severely reduced SC19-induced endothelial cell apoptosis, tight junctions (TJs) protein impairment and the expression of SS2 virulence factor Enolase (Eno), involved in the destruction of BBB. Additionally, SC19-ΔOAHS immunized mice were able to resist SC19 or JZLQ022 infection. In conclusion, we confirmed that OAHS promoted the pathogenicity by enhancing host's BBB permeability and immune escape, and SC19- ΔOAHS is a potential live vaccine.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Camundongos , Células Endoteliais , Homosserina/genética , Sorogrupo , Infecções Estreptocócicas/veterinária , Suínos , Doenças dos Suínos/metabolismo , Virulência
5.
Front Microbiol ; 14: 1329609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260894

RESUMO

Introduction: Klebsiella pneumoniae (K. pneumoniae) is an important opportunistic and zoonotic pathogen which is associated with many diseases in humans and animals. However, the pathogenicity of K. pneumoniae has been neglected and the prevalence of K. pneumoniae is poorly studied due to the lack of rapid and sensitive diagnosis techniques. Methods: In this study, we infected mice and pigs with K. pneumoniae strain from a human patient. An indirect ELISA was established using the KHE protein as the coating protein for the detection of K. pneumoniae specific antibody in clinical samples. A nested PCR method to detect nuclei acids of K. pneumoniae was also developed. Results: We showed that infection with K. pneumoniae strain from a human patient led to mild lung injury of pigs. For the ELISA, the optimal coating concentration of KHE protein was 10 µg/mL. The optimal dilutions of serum samples and secondary antibody were 1:100 and 1:2500, respectively. The analytical sensitivity was 1:800, with no cross-reaction between the coated antigen and porcine serum positive for antibodies against other bacteria. The intra-assay and inter-assay reproducibility coefficients of variation are less than 10%. Detection of 920 clinical porcine serum samples revealed a high K. pneumoniae infection rate by established indirect ELISA (27.28%) and nested PCR (19.13%). Moreover, correlation analysis demonstrated infection rate is positively correlated with gross population, Gross Domestic Product (GDP), and domestic tourists. Discussion: In conclusion, K. pneumoniae is highly prevalent among pigs in China. Our study highlights the role of K. pneumoniae in pig health, which provides a reference for the prevention and control of diseases associated with K. pneumoniae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA