Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39001107

RESUMO

The accuracy of the signal within a driving chain for the rate-integrating hemispherical resonator gyro (RI-HRG) plays a crucial role in the overall performance of the gyro. In this paper, a notable and effective method is proposed to realize the identification and compensation of the unbalanced error in the driving chain for the RI-HRG that improved the performance of the multi-loop control applied in the RI-HRG. Firstly, the assembly inclination and eccentricity error of the hemispherical resonator, the inconsistent metal conductive film layer resistance error of the resonator, the coupling error of the driving chain, and the parameter inconsistency error of the circuit components were considered, and the impact of these errors on the multi-loop control applied in the RI-HRG were analyzed. On this basis, the impact was further summarized as the unbalanced error in the driving chain, which included the unbalanced gain error, equivalent misalignment angle, and unbalanced equivalent misalignment angle error. Then, a model between the unbalanced error in the driving chain and a non-ideal precession angular rate was established, which was applicable to both single channel asynchronous control and dual channel synchronous control of the RI-HRG. Further, an unbalanced error identification and compensation method is proposed by utilizing the RI-HRG output with the virtual precession control. Finally, the effectiveness of the proposed method was verified through simulation and experiments in kind. After error compensation, the zero-bias instability of the RI-HRG was improved from 3.0950°/h to 0.0511°/h. The results of experiments in kind demonstrated that the proposed method can effectively suppress the non-ideal angular rate output caused by the unbalanced error in the driving chain for the RI-HRG, thereby further improving the overall performance of the RI-HRG.

2.
Sensors (Basel) ; 20(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977473

RESUMO

Due to complicated processing technology, the mass distribution of a hemispherical resonator made of fused silica is not uniform, which can affect the azimuth of the standing wave of a resonator under the linear vibration excitation. Therefore, the analysis of standing wave evolution of a resonator with mass imperfection under linear vibration excitation is of significance for the improvement of the output accuracy of a gyroscope. In this paper, it is assumed that the resonator containing the first-third harmonics of mass imperfection is excited by horizontal and vertical linear vibration, respectively; then, the equations of motion of an imperfect resonator under the second-order vibration mode are established by the elastic thin shell theory and Lagrange mechanics principle. Through error mechanism analysis, it is found that, when the frequency of linear vibration is equal to the natural frequency of resonator, the standing wave is bound in the azimuth of different harmonics of mass imperfection with the change in vibration excitation direction. In other words, there are parasitic components in the azimuth of the standing wave of a resonator under linear vibration excitation, which can cause distortion of the output signal of a gyroscope. On the other hand, according to the standing wave binding phenomenon, the azimuths of the first-third harmonics of mass imperfection of a resonator can also be identified under linear vibration excitation, which can provide a theoretical method for the mass balance of an imperfect resonator.

3.
Sensors (Basel) ; 19(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970645

RESUMO

The Hemispherical Resonator Gyro (HRG) is a solid-state and widely used vibrating gyroscope, especially in the field of deep space exploration. The flat-electrode HRG is a new promising type of gyroscope with simpler structure that is easier to be fabricated. In this paper, to cover the shortage of a classical generalized Coriolis Vibration Gyroscope model whose parameters are hard to obtain, the model of flat-electrode HRG is established by the equivalent mechanical model, the motion equations of unideal hemispherical shell resonator are deduced, and the calculation results of parameters in the equations are verified to be reliable and believable by comparing with finite element simulation and the reported experimental data. In order to more truthfully reveal the input and output characteristics of HRG, the excitation and detection models with assemble errors and parameters are established based on the model of flat-electrode capacitor, and they convert both the input and output forms of the HRG model to voltage changes across the electrodes rather than changes in force and capacitance. An identification method of assemble errors and parameters is proposed to evaluate and improve the HRG manufacturing technology and adjust the performance of HRG. The average gap could be identified with the average capacitance of all excitation and detection capacitors; fitting the approximate static capacitor model could identify the inclination angle and direction angle. With the obtained model, a firm and tight connection between the real HRG system and theoretical model is established, which makes it possible to build a fully functional simulation model to study the control and detection methods of standing wave on hemispherical shell resonator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA