Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Radiology ; 310(3): e231429, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38530172

RESUMO

Background Differentiating between benign and malignant vertebral fractures poses diagnostic challenges. Purpose To investigate the reliability of CT-based deep learning models to differentiate between benign and malignant vertebral fractures. Materials and Methods CT scans acquired in patients with benign or malignant vertebral fractures from June 2005 to December 2022 at two university hospitals were retrospectively identified based on a composite reference standard that included histopathologic and radiologic information. An internal test set was randomly selected, and an external test set was obtained from an additional hospital. Models used a three-dimensional U-Net encoder-classifier architecture and applied data augmentation during training. Performance was evaluated using the area under the receiver operating characteristic curve (AUC) and compared with that of two residents and one fellowship-trained radiologist using the DeLong test. Results The training set included 381 patients (mean age, 69.9 years ± 11.4 [SD]; 193 male) with 1307 vertebrae (378 benign fractures, 447 malignant fractures, 482 malignant lesions). Internal and external test sets included 86 (mean age, 66.9 years ± 12; 45 male) and 65 (mean age, 68.8 years ± 12.5; 39 female) patients, respectively. The better-performing model of two training approaches achieved AUCs of 0.85 (95% CI: 0.77, 0.92) in the internal and 0.75 (95% CI: 0.64, 0.85) in the external test sets. Including an uncertainty category further improved performance to AUCs of 0.91 (95% CI: 0.83, 0.97) in the internal test set and 0.76 (95% CI: 0.64, 0.88) in the external test set. The AUC values of residents were lower than that of the best-performing model in the internal test set (AUC, 0.69 [95% CI: 0.59, 0.78] and 0.71 [95% CI: 0.61, 0.80]) and external test set (AUC, 0.70 [95% CI: 0.58, 0.80] and 0.71 [95% CI: 0.60, 0.82]), with significant differences only for the internal test set (P < .001). The AUCs of the fellowship-trained radiologist were similar to those of the best-performing model (internal test set, 0.86 [95% CI: 0.78, 0.93; P = .39]; external test set, 0.71 [95% CI: 0.60, 0.82; P = .46]). Conclusion Developed models showed a high discriminatory power to differentiate between benign and malignant vertebral fractures, surpassing or matching the performance of radiology residents and matching that of a fellowship-trained radiologist. © RSNA, 2024 See also the editorial by Booz and D'Angelo in this issue.


Assuntos
Aprendizado Profundo , Fraturas da Coluna Vertebral , Humanos , Feminino , Masculino , Idoso , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada Multidetectores , Hospitais Universitários
2.
Eur Spine J ; 32(12): 4314-4320, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37401945

RESUMO

PURPOSE: To assess the diagnostic performance of three-dimensional (3D) CT-based texture features (TFs) using a convolutional neural network (CNN)-based framework to differentiate benign (osteoporotic) and malignant vertebral fractures (VFs). METHODS: A total of 409 patients who underwent routine thoracolumbar spine CT at two institutions were included. VFs were categorized as benign or malignant using either biopsy or imaging follow-up of at least three months as standard of reference. Automated detection, labelling, and segmentation of the vertebrae were performed using a CNN-based framework ( https://anduin.bonescreen.de ). Eight TFs were extracted: Varianceglobal, Skewnessglobal, energy, entropy, short-run emphasis (SRE), long-run emphasis (LRE), run-length non-uniformity (RLN), and run percentage (RP). Multivariate regression models adjusted for age and sex were used to compare TFs between benign and malignant VFs. RESULTS: Skewnessglobal showed a significant difference between the two groups when analyzing fractured vertebrae from T1 to L6 (benign fracture group: 0.70 [0.64-0.76]; malignant fracture group: 0.59 [0.56-0.63]; and p = 0.017), suggesting a higher skewness in benign VFs compared to malignant VFs. CONCLUSION: Three-dimensional CT-based global TF skewness assessed using a CNN-based framework showed significant difference between benign and malignant thoracolumbar VFs and may therefore contribute to the clinical diagnostic work-up of patients with VFs.


Assuntos
Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Humanos , Fraturas da Coluna Vertebral/diagnóstico , Coluna Vertebral/patologia , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Fraturas por Osteoporose/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA