Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(8): E997-1005, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858459

RESUMO

The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/fisiologia , Oxirredutases Intramoleculares/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Monócitos/imunologia , Adulto , Animais , Escherichia coli/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Streptococcus agalactiae/imunologia
2.
Nature ; 478(7369): 343-8, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22012392

RESUMO

Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.


Assuntos
Evolução Molecular , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Animais , Humanos , Filogenia , Análise de Componente Principal , Cromossomo X/genética
3.
Genome Res ; 23(1): 34-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23034410

RESUMO

MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression, yet their origins and functional evolution in mammals remain little understood due to the lack of appropriate comparative data. Using RNA sequencing, we have generated extensive and comparable miRNA data for five organs in six species that represent all main mammalian lineages and birds (the evolutionary outgroup) with the aim to unravel the evolution of mammalian miRNAs. Our analyses reveal an overall expansion of miRNA repertoires in mammals, with threefold accelerated birth rates of miRNA families in placentals and marsupials, facilitated by the de novo emergence of miRNAs in host gene introns. Generally, our analyses suggest a high rate of miRNA family turnover in mammals with many newly emerged miRNA families being lost soon after their formation. Selectively preserved mammalian miRNA families gradually evolved higher expression levels, as well as altered mature sequences and target gene repertoires, and were apparently mainly recruited to exert regulatory functions in nervous tissues. However, miRNAs that originated on the X chromosome evolved high expression levels and potentially diverse functions during spermatogenesis, including meiosis, through selectively driven duplication-divergence processes. Overall, our study thus provides detailed insights into the birth and evolution of mammalian miRNA genes and the associated selective forces.


Assuntos
Evolução Molecular , Expressão Gênica/genética , MicroRNAs/genética , Animais , Galinhas , Humanos , Íntrons , Macaca , Camundongos , MicroRNAs/classificação , Família Multigênica , Gambás , Filogenia , Ornitorrinco , Cromossomo X/genética
4.
Front Immunol ; 14: 1268804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035076

RESUMO

Introduction: Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading pathogen of neonatal sepsis. The host-pathogen interactions underlying the progression to life-threatening infection in newborns are incompletely understood. Macrophages are first line in host defenses against GBS, contributing to the initiation, amplification, and termination of immune responses. The goal of this study was to compare the response of newborn and adult monocyte-derived macrophages (MDMs) to GBS. Methods: Monocytes from umbilical cord blood of healthy term newborns and from peripheral blood of healthy adult subjects were cultured with M-CSF to induce MDMs. M-CSF-MDMs, GM-CSF- and IFNγ-activated MDMs were exposed to GBS COH1, a reference strain for neonatal sepsis. Results: GBS induced a greater release of IL-1ß, IL-6, IL-10, IL-12p70 and IL-23 in newborn compared to adult MDMs, while IL-18, IL-21, IL-22, TNF, RANTES/CCL5, MCP-1/CCL2 and IL-8/CXCL8 were released at similar levels. MDM responses to GBS were strongly influenced by conditions of activation and were distinct from those to synthetic bacterial lipopeptides and lipopolysaccharides. Under similar conditions of opsonization, newborn MDMs phagocytosed and killed GBS as efficiently as adult MDMs. Discussion: Altogether, the production of excessive levels of Th1- (IL-12p70), Th17-related (IL-1ß, IL-6, IL-23) and anti-inflammatory (IL-10) cytokines is consistent with a dysregulated response to GBS in newborns. The high responsiveness of newborn MDMs may play a role in the progression of GBS infection in newborns, possibly contributing to the development of life-threatening organ dysfunction.


Assuntos
Interleucina-10 , Sepse Neonatal , Adulto , Recém-Nascido , Humanos , Fator Estimulador de Colônias de Macrófagos , Interleucina-6 , Streptococcus agalactiae , Macrófagos , Interleucina-12 , Interleucina-23
5.
PLoS Biol ; 6(6): e140, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18547142

RESUMO

Gene duplication was prevalent during hominoid evolution, yet little is known about the functional fate of new ape gene copies. We characterized the CDC14B cell cycle gene and the functional evolution of its hominoid-specific daughter gene, CDC14Bretro. We found that CDC14B encodes four different splice isoforms that show different subcellular localizations (nucleus or microtubule-associated) and functional properties. A microtubular CDC14B variant spawned CDC14Bretro through retroposition in the hominoid ancestor 18-25 million years ago (Mya). CDC14Bretro evolved brain-/testis-specific expression after the duplication event and experienced a short period of intense positive selection in the African ape ancestor 7-12 Mya. Using resurrected ancestral protein variants, we demonstrate that by virtue of amino acid substitutions in distinct protein regions during this time, the subcellular localization of CDC14Bretro progressively shifted from the association with microtubules (stabilizing them) to an association with the endoplasmic reticulum. CDC14Bretro evolution represents a paradigm example of rapid, selectively driven subcellular relocalization, thus revealing a novel mode for the emergence of new gene function.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Evolução Molecular , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular/análise , Linhagem Celular , Fosfatases de Especificidade Dupla/análise , Duplicação Gênica , Genes Duplicados , Hominidae/fisiologia , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas/genética
6.
Front Immunol ; 9: 1597, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050534

RESUMO

Infections are a leading cause of mortality and morbidity in newborns. The high susceptibility of newborns to infection has been associated with a limited capacity to mount protective immune responses. Monocytes and macrophages are involved in the initiation, amplification, and termination of immune responses. Depending on cues received from their environment, monocytes differentiate into M1 or M2 macrophages with proinflammatory or anti-inflammatory and tissue repair properties, respectively. The purpose of this study was to characterize differences in monocyte to macrophage differentiation and polarization between newborns and adults. Monocytes from umbilical cord blood of healthy term newborns and from peripheral blood of adult healthy subjects were exposed to GM-CSF or M-CSF to induce M1 or M2 macrophages. Newborn monocytes differentiated into M1 and M2 macrophages with similar morphology and expression of differentiation/polarization markers as adult monocytes, with the exception of CD163 that was expressed at sevenfold higher levels in newborn compared to adult M1 macrophages. Upon TLR4 stimulation, newborn M1 macrophages produced threefold to sixfold lower levels of TNF than adult macrophages, while production of IL-1-ß, IL-6, IL-8, IL-10, and IL-23 was at similar levels as in adults. Nuclear levels of IRF5, a transcription factor involved in M1 polarization, were markedly reduced in newborns, whereas the NF-κB and MAP kinase pathways were not altered. In line with a functional role for IRF5, adenoviral-mediated IRF5 overexpression in newborn M1 macrophages restored lipopolysaccharide-induced TNF production. Altogether, these data highlight a distinct immune response of newborn macrophages and identify IRF5 as a key regulator of macrophage TNF response in newborns.

7.
Front Immunol ; 8: 26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28179905

RESUMO

Macrophage migration inhibitory factor (MIF) is a pleiotropic, constitutively expressed, pro-inflammatory cytokine and an important regulator of immune responses. d-dopachrome tautomerase (DDT), a newly described member of the MIF protein superfamily, shares sequence homology and biological activities with MIF. We recently reported that high expression levels of MIF sustain innate immune responses in newborns. Here, we elected to further characterize age-dependent MIF expression and to define whether DDT shares a similar expression profile with MIF. Therefore, we delineated the circulating concentrations of MIF and DDT throughout life using a large cohort of 307 subjects including fetuses, newborns, infants, children, and adults. Compared to levels measured in healthy adults (median: 5.7 ng/ml for MIF and 16.8 ng/ml for DDT), MIF and DDT plasma concentrations were higher in fetuses (median: 48.9 and 29.6 ng/ml), increased further at birth (median: 82.6 and 52.0 ng/ml), reached strikingly elevated levels on postnatal day 4 (median: 109.5 and 121.6 ng/ml), and decreased to adult levels during the first months of life. A strong correlation was observed between MIF and DDT concentrations in all age groups (R = 0.91, P < 0.0001). MIF and DDT levels correlated with concentrations of vascular endothelial growth factor, a protein upregulated under low oxygen tension and implicated in vascular and lung development (R = 0.70, P < 0.0001 for MIF and R = 0.65, P < 0.0001 for DDT). In very preterm infants, lower levels of MIF and DDT on postnatal day 6 were associated with an increased risk of developing bronchopulmonary dysplasia and late-onset neonatal sepsis. Thus, MIF and DDT plasma levels show a highly specific developmental profile in early life, supporting an important role for these cytokines during the neonatal period.

8.
Cell Rep ; 3(6): 2179-90, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23791531

RESUMO

Understanding the extent of genomic transcription and its functional relevance is a central goal in genomics research. However, detailed genome-wide investigations of transcriptome complexity in major mammalian organs have been scarce. Here, using extensive RNA-seq data, we show that transcription of the genome is substantially more widespread in the testis than in other organs across representative mammals. Furthermore, we reveal that meiotic spermatocytes and especially postmeiotic round spermatids have remarkably diverse transcriptomes, which explains the high transcriptome complexity of the testis as a whole. The widespread transcriptional activity in spermatocytes and spermatids encompasses protein-coding and long noncoding RNA genes but also poorly conserves intergenic sequences, suggesting that it may not be of immediate functional relevance. Rather, our analyses of genome-wide epigenetic data suggest that this prevalent transcription, which most likely promoted the birth of new genes during evolution, is facilitated by an overall permissive chromatin in these germ cells that results from extensive chromatin remodeling.


Assuntos
RNA/genética , Testículo/fisiologia , Transcrição Gênica , Transcriptoma , Animais , Evolução Biológica , Humanos , Masculino , Mamíferos , Espermatócitos/citologia , Espermatócitos/fisiologia , Testículo/citologia
9.
PLoS One ; 6(10): e25241, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21998645

RESUMO

BACKGROUND: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice. PRINCIPAL FINDINGS: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis.


Assuntos
RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Infertilidade Masculina/genética , Meiose/genética , Ribonuclease III/deficiência , Ribonuclease III/genética , Espermatogênese/genética , Espermatozoides/metabolismo , Espermatozoides/patologia , Animais , Apoptose/genética , Elementos de DNA Transponíveis/genética , Deleção de Genes , Inativação Gênica , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Tamanho do Órgão/genética , Túbulos Seminíferos/metabolismo , Túbulos Seminíferos/patologia , Contagem de Espermatozoides , Espermatócitos/metabolismo , Espermatócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA