Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(11): 7822-7830, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456811

RESUMO

Understanding the effects of pressure on actinide compounds is an integral part of safe nuclear waste storage in deep geologic repositories and provides a means of systematically altering the structure and properties. However, detailing how the effects of pressure evolve across the actinide series in the later elements is not typically undertaken because of the challenges of conducting research on these unstable isotopes. Here, a family of bimetallic actinide complexes, [(An(pmtz)2(H2O)3)2(µ-pmtz)]2(pmtz)2·nH2O (An3+ = Cm3+, Bk3+, and Cf3+, pmtz- = 5-(pyrimidyl)tetrazolate; Cm1, Bk1, and Cf1), are reported and represent the first structurally characterized bimetallic berkelium and californium compounds. The pressure response as determined from UV-vis-NIR transitions varies for Cm1, Bk1, and Cf1. The 5f → 5f transitions in Cm1 are notably more sensitive to pressure compared to those in Bk1 and Cf1 and show substantial bathochromic shifting of several 5f → 5f transitions. In the case of Bk1, an ingrowth of a metal-to-ligand charge-transfer transition occurs at elevated pressures because of the accessible Bk3+/Bk4+ couple. For Cf1, no substantial transition shifting or emergence of MLCT transitions is observed at elevated pressures because of the prohibitive energetics of the Cf3+/Cf4+ couple and reduced sensitivity of the 5f → 5f transitions to the local coordination environment because of the more contracted 5f shell versus Cm3+ and Bk3+.

2.
J Chem Phys ; 154(11): 114707, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752369

RESUMO

Ce-based intermetallics are of interest due to the potential to study the interplay of localized magnetic moments and conduction electrons. Our work on Ce-based germanides led to the identification of a new homologous series An+1MnX3n+1 (A = rare earth, M = transition metal, X = tetrels, and n = 1-6). This work presents the single-crystal growth, structure determination, and anisotropic magnetic properties of the n = 4 member of the Cen+1ConGe3n+1 homologous series. Ce5Co4+xGe13-ySny consists of three Ce sites, three Co sites, seven Ge sites, and two Sn sites, and the crystal structure is best modeled in the orthorhombic space group Cmmm where a = 4.3031(8) Å, b = 45.608(13) Å, and c = 4.3264(8) Å, which is in close agreement with the previously reported Sn-free analog where a = 4.265(1) Å, b = 45.175(9) Å, and c = 4.293(3) Å. Anisotropic magnetic measurements show Kondo-like behavior and three magnetic transitions at 6, 4.9, and 2.4 K for Ce5Co4+xGe13-ySny.

3.
Inorg Chem ; 58(9): 6028-6036, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30985121

RESUMO

Single crystals of Ln2Fe4- xCo xSb5- yBi y (Ln = La, Ce; 0 ≤ x < 0.5; 0 ≤ y ≤ 0.2) were grown using Bi flux and self-flux methods. The compounds adopt the La2Fe4Sb5 structure type with tetragonal space group I4/ mmm. The La2Fe4Sb5 structure type is comprised of rare earth atoms capping square Sb nets in a square antiprismatic fashion and two transition-metal networks forming a PbO-type layer with Sb and transition-metal isosceles triangles. Substituting Co into the transition-metal sublattice results in a decrease in the transition temperature and reduced frustration, indicative of a transition from localized to itinerant behavior. In this manuscript, we demonstrated that Bi can be used as an alternate flux to grow single crystals of antimonides. Even with the incorporation of Bi into the Sb square net, the magnetic properties are not significantly affected. In addition, we have shown that the incorporation of Co into the Fe triangular sublattice leads to an itinerant magnetic system.

4.
Inorg Chem ; 58(9): 6037-6043, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31009213

RESUMO

A new structure type of composition Ce6Co5Ge16 was grown out of a molten Sn flux. Ce6Co5Ge16 crystallizes in the orthorhombic space group Cmcm, with highly anisotropic lattice parameters of a = 4.3293(5) Å, b = 55.438(8) Å, and c = 4.3104(4) Å. The resulting single crystals were characterized by X-ray diffraction, and the magnetic and transport properties are presented. The Sn-stabilized structure of Ce6Co5Ge16 is based on the stacking of disordered Ce cuboctahedra and is an intergrowth of existing structure types including AlB2, BaNiSn3, and AuCu3. The stacking of structural subunits has previously been shown to be significant in the fields of superconductivity, quantum materials, and optical materials. Herein, we present the synthesis, characterization, and complex magnetic behavior of Ce6Co5Ge16 at low temperature, including three distinct magnetic transitions.

5.
Inorg Chem ; 57(12): 7402-7411, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29863367

RESUMO

Single-phase polycrystalline powders of Sr1- xSb xHfSe3 ( x = 0, 0.005, 0.01), a new member of the chalcogenide perovskites, were synthesized using a combination of high temperature solid-state reaction and mechanical alloying approaches. Structural analysis using single-crystal as well as powder X-ray diffraction revealed that the synthesized materials are isostructural with SrZrSe3, crystallizing in the orthorhombic space group Pnma (#62) with lattice parameters a = 8.901(2) Å; b = 3.943(1) Å; c = 14.480(3) Å; and Z = 4 for the x = 0 composition. Thermal conductivity data of SrHfSe3 revealed low values ranging from 0.9 to 1.3 W m-1 K-1 from 300 to 700 K, which is further lowered to 0.77 W m-1 K-1 by doping with 1 mol % Sb for Sr. Electronic property measurements indicate that the compound is quite insulating with an electrical conductivity of 2.9 S/cm at 873 K, which was improved to 6.7 S/cm by 0.5 mol % Sb doping. Thermopower data revealed that SrHfSe3 is a p-type semiconductor with thermopower values reaching a maximum of 287 µV/K at 873 K for the 1.0 mol % Sb sample. The optical band gap of Sr1- xSb xHfSe3 samples, as determined by density functional theory calculations and the diffuse reflectance method, is ∼1.00 eV and increases with Sb concentration to 1.15 eV. Careful analysis of the partial densities of states (PDOS) indicates that the band gap in SrHfSe3 is essentially determined by the Se-4p and Hf-5d orbitals with little to no contribution from Sr atoms. Typically, band edges of p- and d-character are a good indication of potentially strong absorption coefficient due to the high density of states of the localized p and d orbitals. This points to potential application of SrHfSe3 as absorbing layer in photovoltaic devices.

6.
Inorg Chem ; 54(6): 2809-19, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25710822

RESUMO

The new Li2MnGeS4 and Li2CoSnS4 compounds result from employing a rational and simple design strategy that guides the discovery of diamond-like semiconductors (DLSs) with wide regions of optical transparency, high laser damage threshold, and efficient second-order optical nonlinearity. Single-crystal X-ray diffraction was used to solve and refine the crystal structures of Li2MnGeS4 and Li2CoSnS4, which crystallize in the noncentrosymmetric space groups Pna21 and Pn, respectively. Synchrotron X-ray powder diffraction (SXRPD) was used to assess the phase purity, and diffuse reflectance UV-vis-NIR spectroscopy was used to estimate the bandgaps of Li2MnGeS4 (Eg = 3.069(3) eV) and Li2CoSnS4 (Eg = 2.421(3) eV). In comparison with Li2FeGeS4, Li2FeSnS4, and Li2CoSnS4 DLSs, Li2MnGeS4 exhibits the widest region of optical transparency (0.60-25 µm) and phase matchability (≥1.6 µm). All four of the DLSs exhibit second-harmonic generation and are compared with the benchmark NLO material, AgGaSe2. Most remarkably, Li2MnGeS4 does not undergo two- or three-photon absorption upon exposure to a fundamental Nd:YAG beam (λ = 1.064 µm) and exhibits a laser damage threshold > 16 GW/cm(2).


Assuntos
Complexos de Coordenação/química , Germânio/química , Lasers , Compostos de Lítio/química , Dinâmica não Linear , Fenômenos Ópticos , Semicondutores , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular
7.
Dalton Trans ; 46(30): 10102-10104, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28726922

RESUMO

Correction for 'Infrared nonlinear optical properties of lithium-containing diamond-like semiconductors Li2ZnGeSe4 and Li2ZnSnSe4' by Jian-Han Zhang et al., Dalton Trans., 2015, 44, 11212-11222.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA