Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 41: 357-380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32920539

RESUMO

The viral component in aquatic systems clearly needs to be incorporated into future ocean and inland water climate models. Viruses have the potential to influence carbon and nutrient cycling in aquatic ecosystems significantly. Changing climate likely has both direct and indirect influence on virus-mediated processes, among them an impact on food webs, biogeochemical cycles and on the overall metabolic performance of whole ecosystems. Here we synthesise current knowledge on potential climate-related consequences for viral assemblages, virus-host interactions and virus functions, and in turn, viral processes contributing to climate change. There is a need to increase the accuracy of predictions of climate change impacts on virus- driven processes, particularly of those linked to biological production and biogeochemical cycles. Comprehension of the relationships between microbial/viral processes and global phenomena is essential to predict the influence on as well as the response of the biosphere to global change.


Assuntos
Vírus/metabolismo , Carbono/metabolismo , Mudança Climática , Ecossistema , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos
2.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33218998

RESUMO

Phytoplankton contribute almost half of the world's total primary production. The exudates and viral lysates of phytoplankton are two important forms of dissolved organic matter (DOM) in aquatic environments and fuel heterotrophic prokaryotic metabolism. However, the effect of viral infection on the composition and biological availability of phytoplankton-released DOM is poorly understood. Here, we investigated the optical characteristics and microbial utilization of the exudates and viral lysates of the ecologically important unicellular picophytoplankton Prochlorococcus Our results showed that Prochlorococcus DOM produced by viral lysis (Pro-vDOM) with phages of three different morphotypes (myovirus P-HM2, siphovirus P-HS2, and podovirus P-SSP7) had higher humic-like fluorescence intensities, lower absorption coefficients, and higher spectral slopes than DOM exuded by Prochlorococcus (Pro-exudate). The results indicate that viral infection altered the composition of Prochlorococcus-derived DOM and might contribute to the pool of oceanic humic-like DOM. Incubation with Pro-vDOM resulted in a greater dissolved organic carbon (DOC) degradation rate and lower absorption spectral slope and heterotrophic bacterial growth rate than incubation with Pro-exudate, suggesting that Pro-vDOM was more bioavailable than Pro-exudate. In addition, the stimulated microbial community succession trajectories were significantly different between the Pro-exudate and Pro-vDOM treatments, indicating that viral lysates play an important role in shaping the heterotrophic bacterial community. Our study demonstrated that viral lysis altered the chemical composition and biological availability of DOM derived from Prochlorococcus, which is the numerically dominant phytoplankton in the oligotrophic ocean.IMPORTANCE The unicellular picocyanobacterium Prochlorococcus is the numerically dominant phytoplankton in the oligotrophic ocean, contributing to the vast majority of marine primary production. Prochlorococcus releases a significant fraction of fixed organic matter into the surrounding environment and supports a vital portion of heterotrophic bacterial activity. Viral lysis is an important biomass loss process of Prochlorococcus However, little is known about whether and how viral lysis affects Prochlorococcus-released dissolved organic matter (DOM). Our paper shows that viral infection alters the optical properties (such as the absorption coefficients, spectral slopes, and fluorescence intensities) of released DOM and might contribute to a humic-like DOM pool and carbon sequestration in the ocean. Meanwhile, viral lysis also releases various intracellular labile DOM, including amino acids, protein-like DOM, and lower-molecular-weight DOM, increases the bioavailability of DOM, and shapes the successive trajectory of the heterotrophic bacterial community. Our study highlights the importance of viruses in impacting the DOM quality in the ocean.


Assuntos
Bacteriófagos/fisiologia , Fitoplâncton/metabolismo , Fitoplâncton/virologia , Prochlorococcus/metabolismo , Prochlorococcus/virologia , Microbiota , Fenômenos Ópticos , Água do Mar/microbiologia
3.
J Exp Biol ; 219(Pt 20): 3208-3217, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27471280

RESUMO

Ocean acidification is a major threat to calcifying marine organisms such as deep-sea cold-water corals (CWCs), but related knowledge is scarce. The aragonite saturation threshold (Ωa) for calcification, respiration and organic matter fluxes were investigated experimentally in the Mediterranean Madrepora oculata Over 10 weeks, colonies were maintained under two feeding regimes (uptake of 36.75 and 7.46 µmol C polyp-1 week-1) and exposed in 2 week intervals to a consecutively changing air-CO2 mix (pCO2) of 400, 1600, 800, 2000 and 400 ppm. There was a significant effect of feeding on calcification at initial ambient pCO2, while with consecutive pCO2 treatments, feeding had no effect on calcification. Respiration was not significantly affected by feeding or pCO2 levels. Coral skeletons started to dissolve at an average Ωa threshold of 0.92, but recovered and started to calcify again at Ωa≥1. The surplus energy required to counteract dissolution at elevated pCO2 (≥1600 µatm) was twice that at ambient pCO2 Yet, feeding had no mitigating effect at increasing pCO2 levels. This could be due to the fact that the energy required for calcification is a small fraction (1-3%) of the total metabolic energy demand and corals even under low food conditions might therefore still be able to allocate this small portion of energy to calcification. The response and resistance to ocean acidification are consequently not controlled by feeding in this species, but more likely by chemical reactions at the site of calcification and exchange processes between the calicoblastic layer and ambient seawater.


Assuntos
Antozoários/efeitos dos fármacos , Antozoários/fisiologia , Calcificação Fisiológica/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Temperatura Baixa , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Água , Animais , Antozoários/anatomia & histologia , Carbonato de Cálcio/química , Carbono/análise , Respiração Celular/efeitos dos fármacos , Metabolismo Energético/fisiologia , Mar Mediterrâneo , Regulação para Cima/efeitos dos fármacos
4.
Natl Sci Rev ; 10(4): nwad009, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36960220

RESUMO

It is commonly recognized that viruses control the composition, metabolism, and evolutionary trajectories of prokaryotic communities, with resulting vital feedback on ecosystem functioning and nutrient cycling in a wide range of ecosystems. Although the deep biosphere has been estimated to be the largest reservoir for viruses and their prokaryotic hosts, the biology and ecology of viruses therein remain poorly understood. The deep virosphere is an enigmatic field of study in which many critical questions are still to be answered. Is the deep virosphere simply a repository for deeply preserved, non-functioning virus particles? Or are deep viruses infectious agents that can readily infect suitable hosts and subsequently shape microbial populations and nutrient cycling? Can the cellular content released by viral lysis, and even the organic structures of virions themselves, serve as the source of bioavailable nutrients for microbial activity in the deep biosphere as in other ecosystems? In this review, we synthesize our current knowledge of viruses in the deep biosphere and seek to identify topics with the potential for substantial discoveries in the future.

5.
Research (Wash D C) ; 6: 0213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614364

RESUMO

Marine organisms perform a sea of diel rhythmicity. Planktonic diel dynamics have been shown to be driven by light, energy resources, circadian rhythms, and the coordinated coupling of photoautotrophs and heterotrophic bacterioplankton. Here, we explore the diel fluctuation of viral production and decay and their impact on the total and active bacterial community in the coastal and open seawaters of the South China Sea. The results showed that the night-production diel pattern of lytic viral production was concurrent with the lower viral decay at night, contributing to the accumulation of the viral population size during the night for surface waters. The diel variations in bacterial activity, community composition, and diversity were found highly affected by viral dynamics. This was revealed by the finding that bacterial community diversity was positively correlated to lytic viral production in the euphotic zone of the open ocean but was negatively related to lysogenic viral production in the coastal ocean. Such distinct but contrasting correlations suggest that viral life strategies can not only contribute to diversifying bacterial community but also potentially piggyback their host to dominate bacterial community, suggesting the tightly synchronized depth-dependent and habitat-specific diel patterns of virus-host interactions. It further implies that viruses serve as an ecologically important driver of bacterial diel dynamics across the ocean, highlighting the viral roles in bacterial ecological and biogeochemical processes in the ocean.

6.
ISME J ; 16(6): 1668-1675, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35365738

RESUMO

Particle sinking is an important process in the ocean, influencing the biogeochemical cycle and driving the long-term preservation of carbon into the deep sea via the biological pump. However, as an important component of marine ecosystems, the role of viruses during sinking is still poorly understood. Therefore, we performed a series of transplantation experiments in the South China Sea to simulate environmental changes during sinking and investigate their effects on viral eco-dynamics and life strategy. Our study demonstrated increased viral production but decreased virus-mediated bacterial mortality after transplantation. A larger burst size and switch from the lysogenic to lytic strategy were shown to contribute to enhanced viral productivity. We provide experimental evidence that surface viral ecological characteristics changed dramatically after transplantation into deep-sea waters, indicating a potential importance of viruses during vertical sinking in the ocean. This effect probably provides positive feedback on the efficiency of the biological pump.


Assuntos
Ecossistema , Vírus , Bactérias , Proteínas de Membrana Transportadoras , Oceanos e Mares , Água do Mar/microbiologia
7.
Appl Environ Microbiol ; 77(21): 7730-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926220

RESUMO

Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Biodiversidade , Monoéster Fosfórico Hidrolases/genética , Água do Mar/virologia , Proteínas Virais/genética , Virologia/métodos , Bacteriófagos/isolamento & purificação , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
8.
Appl Environ Microbiol ; 76(20): 6724-32, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20729320

RESUMO

The study site located in the Mediterranean Sea was visited eight times in 2005 and 2006 to collect samples from the epipelagic (5 m), mesopelagic (200 m, 600 m), and bathypelagic (1,000 m, 2,000 m) zones. Randomly amplified polymorphic DNA PCR (RAPD-PCR) analysis was used to obtain fingerprints from microbial and viral size fractions using two different primers each. Depending on the primer used, the number of bands in the water column varied between 12 to 24 and 6 to 19 for the microbial size fraction and between 16 to 26 and 8 to 22 for the viral size fraction. The majority of sequences from the microbial fraction was related to Alphaproteobacteria, Cyanobacteria, Gammaproteobacteria, Firmicutes, and Eukaryota. Only 9% of sequences obtained from the viral fraction were of identifiable viral origin; however, 76% of sequences had no close relatives in the nr database of GenBank. Only 20.1% of complete phage genomes tested in silico resulted in potential RAPD-PCR products, and only 12% of these were targeted by both primers. Also, in silico analysis indicated that RAPD-PCR profiles obtained by the two different primers are largely representative of two different subsets of the viral community. Also, correlation analyses and Mantel tests indicate that the links between changes in the microbial and viral community were strongest in the bathypelagic. Thus, these results suggest a strong codevelopment of virus and host communities in deep waters. The data also indicate that virus communities in the bathypelagic zone can exhibit substantial temporal dynamics.


Assuntos
Bactérias/classificação , Análise por Conglomerados , Eucariotos/classificação , Metagenoma , Técnica de Amplificação ao Acaso de DNA Polimórfico , Água do Mar/microbiologia , Vírus/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Genótipo , Mar Mediterrâneo , Vírus/genética , Vírus/isolamento & purificação
9.
Appl Environ Microbiol ; 76(5): 1406-16, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20038688

RESUMO

We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Comamonadaceae/crescimento & desenvolvimento , Ecossistema , Água Doce/microbiologia , Técnicas de Cocultura , Comamonadaceae/genética , Comamonadaceae/virologia , Cytophagaceae/crescimento & desenvolvimento , Eucariotos/crescimento & desenvolvimento
10.
Commun Biol ; 3(1): 256, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444696

RESUMO

Viral abundance in deep-sea environments is high. However, the biological, ecological and biogeochemical roles of viruses in the deep sea are under debate. In the present study, microcosm incubations of deep-sea bacterioplankton (2,000 m deep) with normal and reduced pressure of viral lysis were conducted in the western Pacific Ocean. We observed a negative effect of viruses on prokaryotic abundance, indicating the top-down control of bacterioplankton by virioplankton in the deep-sea. The decreased bacterial diversity and a different bacterial community structure with diluted viruses indicate that viruses are sustaining a diverse microbial community in deep-sea environments. Network analysis showed that relieving viral pressure decreased the complexity and clustering coefficients but increased the proportion of positive correlations for the potentially active bacterial community, which suggests that viruses impact deep-sea bacterioplankton interactions. Our study provides experimental evidences of the crucial role of viruses in microbial ecology and biogeochemistry in deep-sea ecosystems.


Assuntos
Bactérias/isolamento & purificação , Biomassa , Ecossistema , Plâncton/isolamento & purificação , Água do Mar/microbiologia , Água do Mar/virologia , Vírus/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Plâncton/classificação , Plâncton/genética
11.
Environ Microbiol ; 11(5): 1181-93, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19207563

RESUMO

The impact of viruses and protists on bacterioplankton mortality was examined monthly during 2 years (May 2005-April 2007) in an oligotrophic coastal environment (NW Mediterranean Sea). We expected that in such type of system, (i) bacterial losses would be caused mainly by protists, and (ii) lysogeny would be an important type of virus-host interaction. During the study period, viruses and grazers together were responsible for 50.6 +/- 40.1% day(-1) of bacterial standing stock losses (BSS) and 59.7 +/- 44.0% day(-1) of bacterial production losses (BP). Over the first year (May 2005-April 2006), protists were the principal cause of bacterial mortality, removing 29.9 +/- 20.4% day(-1) of BSS and 33.9 +/- 24.3% day(-1) of BP, whereas viral lysis removed 13.5 +/- 17.0% day(-1) of BSS and 12.3 +/- 12.3% day(-1) of BP. During the second year (May 2006-April 2007), viruses caused comparable bacterial losses (29.2 +/- 14.8% day(-1) of BSS and 40.9 +/- 20.7% day(-1) of BP) to protists (28.6 +/- 25.5% day(-1) of BSS and 32.4 +/- 20.0% day(-1) of BP). In 37% of cases higher losses of BP due to viruses than due to protists were found. Lysogenic infection was detected in 11 of 24 samplings. Contrary to our expectations, lytic infections dominated over the two years, and viruses resulted to be a significant source of bacterial mortality in this oligotrophic site.


Assuntos
Antibiose , Bactérias/crescimento & desenvolvimento , Bacteriófagos/crescimento & desenvolvimento , Microbiologia Ambiental , Eucariotos/crescimento & desenvolvimento , Animais , Bactérias/virologia , Bacteriólise , Ecossistema , Lisogenia , Mar Mediterrâneo
12.
Environ Microbiol ; 11(10): 2585-97, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19558511

RESUMO

We demonstrate here results showing that bottom-up and top-down control mechanisms can operate simultaneously and in concert in marine microbial food webs, controlling prokaryote diversity by a combination of viral lysis and substrate limitation. Models in microbial ecology predict that a shift in the type of bacterial growth rate limitation is expected to have a major effect on species composition within the community of bacterial hosts, with a subsequent shift in the composition of the viral community. Only moderate effects would, however, be expected in the absolute number of coexisting virus-host pairs. We investigated these relationships in nutrient-manipulated systems, under simulated in situ conditions. There was a strong correlation in the clustering of the viral and bacterial community data supporting the existence of an important link between the bacterial and viral communities. As predicted, the total number of viral populations was the same in all treatments, while the composition of the viral community varied. Our results support the theoretical prediction that there is one control mechanism for the number of niches for coexisting virus-host pairs (top-down control), and another mechanism that controls which virus-host pairs occupy these niches (bottom-up control).


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Biodiversidade , Água do Mar/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bacteriófagos/genética , Clorofila/biossíntese , Clorofila A , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Viral/análise , DNA Viral/genética , Eletroforese em Gel de Campo Pulsado , Citometria de Fluxo , Alimentos , Glucose/química , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Fosfatos/química , Fosfatos/metabolismo , Água do Mar/química , Microbiologia da Água
13.
Appl Environ Microbiol ; 75(14): 4801-12, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19465525

RESUMO

A dilution and size fractionation approach was used to study the separate and combined effects of viruses and flagellates on prokaryotic production ([(3)H]leucine incorporation) and community composition (16S rRNA gene PCR and denaturing gradient gel electrophoresis [DGGE]) in the upper mixed layer and the deep chlorophyll maximum in the offshore Mediterranean Sea. Four experiments were established using differential filtration: a resource control without predators (C treatment), treatment in the presence of viruses (V treatment), treatment in the presence of flagellates (F treatment), and treatment in the presence of both predators (VF treatment). The V and VF treatments increased prokaryotic abundance (1.4- to 2.3-fold) and the number of DGGE bands (by up to 43%) and decreased prokaryotic production compared to the level for the C treatment (by 22 to 99%). For the F treatment, significant differences compared to the level for the C treatment were found as well, but trends were not consistent across experiments. The relative abundances of the high-nucleic-acid subgroups of prokaryotes with high scatter (HNAhs) in flow cytometer settings were lower in the V and VF treatments than in the C and F treatments. These differences were probably due to lysis of very active HNA prokaryotes in the V and VF treatments. Our results indicate that the presence of viruses or viruses plus flagellates sustains prokaryotic diversity and controls prokaryotic production by regulating the proportion of the highly active members of the community. Our data also suggest that lysis and grazing control influences the relationship between bacterial community composition and prokaryotic production.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biodiversidade , Água do Mar/microbiologia , Bactérias/genética , Bactérias/metabolismo , Contagem de Colônia Microbiana , DNA Bacteriano/genética , DNA Ribossômico/genética , Ecossistema , Eletroforese em Gel de Poliacrilamida/métodos , Leucina/metabolismo , Mar Mediterrâneo , Reação em Cadeia da Polimerase/métodos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Água do Mar/parasitologia , Água do Mar/virologia
14.
FEMS Microbiol Rev ; 28(2): 127-81, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15109783

RESUMO

The finding that total viral abundance is higher than total prokaryotic abundance and that a significant fraction of the prokaryotic community is infected with phages in aquatic systems has stimulated research on the ecology of prokaryotic viruses and their role in ecosystems. This review treats the ecology of prokaryotic viruses ('phages') in marine, freshwater and soil systems from a 'virus point of view'. The abundance of viruses varies strongly in different environments and is related to bacterial abundance or activity suggesting that the majority of the viruses found in the environment are typically phages. Data on phage diversity are sparse but indicate that phages are extremely diverse in natural systems. Lytic phages are predators of prokaryotes, whereas lysogenic and chronic infections represent a parasitic interaction. Some forms of lysogeny might be described best as mutualism. The little existing ecological data on phage populations indicate a large variety of environmental niches and survival strategies. The host cell is the main resource for phages and the resource quality, i.e., the metabolic state of the host cell, is a critical factor in all steps of the phage life cycle. Virus-induced mortality of prokaryotes varies strongly on a temporal and spatial scale and shows that phages can be important predators of bacterioplankton. This mortality and the release of cell lysis products into the environment can strongly influence microbial food web processes and biogeochemical cycles. Phages can also affect host diversity, e.g., by 'killing the winner' and keeping in check competitively dominant species or populations. Moreover, they mediate gene transfer between prokaryotes, but this remains largely unknown in the environment. Genomics or proteomics are providing us now with powerful tools in phage ecology, but final testing will have to be performed in the environment.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Ecologia , Células Procarióticas/virologia
15.
FEMS Microbiol Lett ; 363(1): fnv216, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26567907

RESUMO

Marine organic aggregates are sites of high of viral accumulation; however, still little is known about their colonization processes and interactions with their local bacterial hosts. By taking advantage of a novel approach (paramagnetic functionalized microsphere method) to create and incubate artificial macroaggregates, we examined the small-scale movements of viruses and bacteria between such marine snow particles and the surrounding water. The examination of the codynamics of both free-living and attached viral and bacterial abundance, over 12 hours of incubation in virus-free water, suggests that aggregates are rather comparable to viral factories than to viral traps where a significant part of the virions production might be locally diverted to the water column. Also, the near-zero proportion of lysogenized cells measured in aggregates after mitomycin-C induction seems to indicate that lysogeny is not a prominent viral reproduction pathway in organic aggregates where most viruses might rather be virulent. Finally, we hypothesize that, contrary to bacteria, which can use both strong attachment and detachment from aggregates (two-way motion of bacteria), the adsorption of planktonic viruses appears to be numerically negligible compared to their massive export from the aggregates into the water column (one-way motion of viruses).


Assuntos
Organismos Aquáticos/isolamento & purificação , Organismos Aquáticos/virologia , Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/isolamento & purificação , Consórcios Microbianos , Ecossistema , Água do Mar/microbiologia , Água do Mar/virologia
17.
PLoS One ; 9(6): e100600, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959907

RESUMO

The aim of this study was to compare the composition of two deep-sea viral communities obtained from the Romanche Fracture Zone in the Atlantic Ocean (collected at 5200 m depth) and the southwest Mediterranean Sea (from 2400 m depth) using a pyro-sequencing approach. The results are based on 18.7% and 6.9% of the sequences obtained from the Atlantic Ocean and the Mediterranean Sea, respectively, with hits to genomes in the non-redundant viral RefSeq database. The identifiable richness and relative abundance in both viromes were dominated by archaeal and bacterial viruses accounting for 92.3% of the relative abundance in the Atlantic Ocean and for 83.6% in the Mediterranean Sea. Despite characteristic differences in hydrographic features between the sampling sites in the Atlantic Ocean and the Mediterranean Sea, 440 virus genomes were found in both viromes. An additional 431 virus genomes were identified in the Atlantic Ocean and 75 virus genomes were only found in the Mediterranean Sea. The results indicate that the rather contrasting deep-sea environments of the Atlantic Ocean and the Mediterranean Sea share a common core set of virus types constituting the majority of both virus communities in terms of relative abundance (Atlantic Ocean: 81.4%; Mediterranean Sea: 88.7%).


Assuntos
Biodiversidade , Água do Mar/microbiologia , Vírus/classificação , Oceano Atlântico , Composição de Bases , Ecossistema , Genoma Viral/genética , Mar Mediterrâneo , Metagenômica , Vírus/genética
18.
FEMS Microbiol Ecol ; 85(3): 443-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23578374

RESUMO

Bacterial utilization of dissolved organic matter plays an important role in marine carbon cycling. In this study, the response of bacterioplankton to a gradient of carbon (glucose) addition was investigated experimentally in a subtropical coastal environment in the absence of top-down control by viruses and flagellates. Bacterial abundance and production were stimulated by glucose addition corresponding to a gradient of glucose. Differences in the extent of stimulation suggested different bacterial life strategies under different nutrient conditions. Bacterial community diversity as revealed by denaturing gradient gel electrophoresis (DGGE) showed a unimodal productivity-diversity (number of DGGE bands) relationship after 3-day incubation. DNA fingerprinting profiling and cluster analysis showed clear and gradual changes in bacterial community structure along the gradient of glucose concentrations, reflecting the competition for carbon supply among bacterial groups. Sequencing analysis of the DGGE bands disclosed the relative abundance of seven bacterial genotypes in the Alteromonadaceae and Roseovarius that gradually decreased with the glucose enrichment while two Vibrio genotypes showed the reverse increasing trend. This suggested that Vibrio was a more successful opportunist at high carbon availability.


Assuntos
Bactérias/classificação , Plâncton/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Impressões Digitais de DNA , Eletroforese em Gel de Gradiente Desnaturante , Glucose/metabolismo , Plâncton/isolamento & purificação , Plâncton/metabolismo
19.
PLoS One ; 8(11): e76800, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244268

RESUMO

A general model of species diversity predicts that the latter is maximized when productivity and disturbance are balanced. Based on this model, we hypothesized that the response of bacterial diversity to the ratio of viral to bacterial production (VP/BP) would be dome-shaped. In order to test this hypothesis, we obtained data on changes in bacterial communities (determined by terminal restriction fragment length polymorphism of 16S rRNA gene) along a wide VP/BP gradient (more than two orders of magnitude), using seawater incubations from NW Mediterranean surface waters, i.e., control and treatments with additions of phosphate, viruses, or both. In December, one dominant Operational Taxonomic Unit accounted for the major fraction of total amplified DNA in the phosphate addition treatment (75±20%, ± S.D.), but its contribution was low in the phosphate and virus addition treatment (23±19%), indicating that viruses prevented the prevalence of taxa that were competitively superior in phosphate-replete conditions. In contrast, in February, the single taxon predominance in the community was held in the phosphate addition treatment even with addition of viruses. We observed statistically robust dome-shaped response patterns of bacterial diversity to VP/BP, with significantly high bacterial diversity at intermediate VP/BP. This was consistent with our model-based hypothesis, indicating that bacterial production and viral-induced mortality interactively affect bacterial diversity in seawater.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Biodiversidade , Água do Mar/microbiologia , Vírus/crescimento & desenvolvimento , Microbiologia da Água , Organismos Aquáticos/virologia , Bactérias/virologia
20.
PLoS One ; 8(4): e62655, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23646133

RESUMO

Ocean acidification caused by anthropogenic uptake of CO2 is perceived to be a major threat to calcifying organisms. Cold-water corals were thought to be strongly affected by a decrease in ocean pH due to their abundance in deep and cold waters which, in contrast to tropical coral reef waters, will soon become corrosive to calcium carbonate. Calcification rates of two Mediterranean cold-water coral species, Lophelia pertusa and Madrepora oculata, were measured under variable partial pressure of CO2 (pCO2) that ranged between 380 µatm for present-day conditions and 930 µatm for the end of the century. The present study addressed both short- and long-term responses by repeatedly determining calcification rates on the same specimens over a period of 9 months. Besides studying the direct, short-term response to elevated pCO2 levels, the study aimed to elucidate the potential for acclimation of calcification of cold-water corals to ocean acidification. Net calcification of both species was unaffected by the levels of pCO2 investigated and revealed no short-term shock and, therefore, no long-term acclimation in calcification to changes in the carbonate chemistry. There was an effect of time during repeated experiments with increasing net calcification rates for both species, however, as this pattern was found in all treatments, there is no indication that acclimation of calcification to ocean acidification occurred. The use of controls (initial and ambient net calcification rates) indicated that this increase was not caused by acclimation in calcification response to higher pCO2. An extrapolation of these data suggests that calcification of these two cold-water corals will not be affected by the pCO2 level projected at the end of the century.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica , Dióxido de Carbono/química , Temperatura Baixa , Água do Mar/química , Animais , Carbonatos/química , Ecossistema , Concentração de Íons de Hidrogênio , Mar Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA