Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
JTCVS Open ; 17: 260-268, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38420555

RESUMO

Objectives: Data are scarce on whether the composition of the lung microbiome (extending from the nasopharynx to the peripheral lung tissue) varies according to histology or grade of non-small cell lung cancer. We hypothesized that the composition of the lung microbiome would vary according to the histology and the grade of non-small cell lung cancer. Methods: We collected naso-oral and central lobar (cancer affected, ipsilateral unaffected, and contralateral unaffected) bronchoalveolar lavage fluid and brushing samples from patients with clinical early-stage lung cancer between July 2018 and February 2020 at a single academic center. We performed bacterial 16S rRNA sequencing and then compared clinical and pathologic findings with microbiome signatures. Results: Samples were collected from 28 patients. Microbial composition in affected lobes displayed unique enrichment of oropharyngeal bacterial species that was significantly different compared with that from the unaffected contralateral lobes; patients with chronic obstructive pulmonary disease had similar diversity to those without chronic obstructive pulmonary disease (P = .1312). The lung microbiome diversity in patients with adenocarcinoma was similar to those with squamous cell cancer (P = .27). There were no differences in diversity or composition in the unaffected lobes of patients with adenocarcinoma versus squamous cell cancer. There was a trend toward lower lung microbial diversity in poorly differentiated adenocarcinomas compared with well-differentiated adenocarcinomas (P = .08). Conclusions: The lung microbiota differs between cancer affected and unaffected lobes in the same patient. Furthermore, poorly differentiated lung cancers were associated with lower microbial diversity. Larger studies will be required to confirm these findings.

2.
Proc Natl Acad Sci U S A ; 107(19): 8788-93, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421486

RESUMO

Otto Warburg's theory on the origins of cancer postulates that tumor cells have defects in mitochondrial oxidative phosphorylation and therefore rely on high levels of aerobic glycolysis as the major source of ATP to fuel cellular proliferation (the Warburg effect). This is in contrast to normal cells, which primarily utilize oxidative phosphorylation for growth and survival. Here we report that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway. The major function of glycolytic ATP is to support growth under hypoxic conditions. Glutamine conversion into the tricarboxylic acid cycle intermediate alpha-ketoglutarate through glutaminase and alanine aminotransferase is essential for Kras-induced anchorage-independent growth. Mitochondrial metabolism allows for the generation of reactive oxygen species (ROS) which are required for Kras-induced anchorage-independent growth through regulation of the ERK MAPK signaling pathway. We show that the major source of ROS generation required for anchorage-independent growth is the Q(o) site of mitochondrial complex III. Furthermore, disruption of mitochondrial function by loss of the mitochondrial transcription factor A (TFAM) gene reduced tumorigenesis in an oncogenic Kras-driven mouse model of lung cancer. These results demonstrate that mitochondrial metabolism and mitochondrial ROS generation are essential for Kras-induced cell proliferation and tumorigenesis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aerobiose , Animais , Adesão Celular , Proliferação de Células , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glutamina/metabolismo , Glicólise , Células HCT116 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Fosforilação Oxidativa , Via de Pentose Fosfato
3.
Cancer J ; 29(2): 61-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36957975

RESUMO

ABSTRACT: Lung cancer is the leading cause of cancer-related deaths. Over the past 10 years, significant advances in treatment modalities, including immune checkpoint inhibitor (ICI) blockade, have led to improved outcomes. Elucidating predicative biomarkers in responders and nonresponders to ICI will lead to development of therapeutic targets that could enhance ICI efficacy. Recently, the gut microbiome was identified as a predictive biomarker for ICI in patients with multiple cancer types. However, it is unclear how other host microbiomes influence tumorigenesis and response to ICI. Other groups have explored the lung microbiome as it relates to carcinogenesis and immunotherapy efficacy. In this review, we explore the role of the lung microbiome in health and disease. We also review the current state of lung microbiome research as it relates to tumorigenesis and treatments and provide potential insights into how the lung microbiome could improve outcomes in patients with cancer.


Assuntos
Neoplasias Pulmonares , Microbiota , Humanos , Imunoterapia/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Carcinogênese , Biomarcadores , Transformação Celular Neoplásica , Pulmão
4.
J Clin Oncol ; 41(35): 5448-5472, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37820295

RESUMO

PURPOSE: To provide evidence-based recommendations to practicing clinicians on the management of patients with small-cell lung cancer. METHODS: An Expert Panel of medical oncology, thoracic surgery, radiation oncology, pulmonary, community oncology, research methodology, and advocacy experts were convened to conduct a literature search, which included systematic reviews, meta-analyses, and randomized controlled trials published from 1990 through 2022. Outcomes of interest included response rates, overall survival, disease-free survival or recurrence-free survival, and quality of life. Expert Panel members used available evidence and informal consensus to develop evidence-based guideline recommendations. RESULTS: The literature search identified 95 relevant studies to inform the evidence base for this guideline. RECOMMENDATIONS: Evidence-based recommendations were developed to address systemic therapy options, timing of therapy, treatment in patients who are older or with poor performance status, role of biomarkers, and use of myeloid-supporting agents in patients with small-cell lung cancer.Additional information is available at www.asco.org/thoracic-cancer-guidelines.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Oncologia/métodos , Ontário , Qualidade de Vida , Carcinoma de Pequenas Células do Pulmão/terapia
5.
Cancers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358724

RESUMO

Lung cancer remains the second most commonly diagnosed cancer worldwide and the leading cause of cancer-related mortality. The mapping of genomic alterations and their role in lung-cancer progression has been followed by the development of new therapeutic options. Several novel drugs, such as targeted therapy and immunotherapy, have significantly improved outcomes. However, many patients with lung cancer do not benefit from existing therapies or develop progressive disease, leading to increased morbidity and mortality despite initial responses to treatment. Alterations in DNA-damage repair (DDR) genes represent a cancer hallmark that impairs a cell's ability to prevent deleterious mutation accumulation and repair. These alterations have recently emerged as a therapeutic target in breast, ovarian, prostate, and pancreatic cancers. The role of DDR alterations remains largely unknown in lung cancer. Nevertheless, recent research efforts have highlighted a potential role of some DDR alterations as predictive biomarkers of response to treatment. Despite the failure of PARP inhibitors (main class of DDR targeting agents) to improve outcomes in lung cancer patients, there is some evidence suggesting a role of PARP inhibitors and other DDR targeting agents in benefiting a distinct subset of lung cancer patients. In this review, we will discuss the existing literature on DDR alterations and homologous recombination deficiency (HRD) state as predictive biomarkers and therapeutic targets in both non-small cell lung and small cell lung cancer.

6.
Nat Metab ; 4(9): 1119-1137, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131208

RESUMO

Recurrent loss-of-function deletions cause frequent inactivation of tumour suppressor genes but often also involve the collateral deletion of essential genes in chromosomal proximity, engendering dependence on paralogues that maintain similar function. Although these paralogues are attractive anticancer targets, no methodology exists to uncover such collateral lethal genes. Here we report a framework for collateral lethal gene identification via metabolic fluxes, CLIM, and use it to reveal MTHFD2 as a collateral lethal gene in UQCR11-deleted ovarian tumours. We show that MTHFD2 has a non-canonical oxidative function to provide mitochondrial NAD+, and demonstrate the regulation of systemic metabolic activity by the paralogue metabolic pathway maintaining metabolic flux compensation. This UQCR11-MTHFD2 collateral lethality is confirmed in vivo, with MTHFD2 inhibition leading to complete remission of UQCR11-deleted ovarian tumours. Using CLIM's machine learning and genome-scale metabolic flux analysis, we elucidate the broad efficacy of targeting MTHFD2 despite distinct cancer genetic profiles co-occurring with UQCR11 deletion and irrespective of stromal compositions of tumours.


Assuntos
Aminoidrolases , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Enzimas Multifuncionais , Neoplasias Ovarianas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Feminino , Humanos , Hidrolases , Redes e Vias Metabólicas , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Mitocôndrias/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , NAD/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
7.
Proc Natl Acad Sci U S A ; 105(7): 2622-7, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18268343

RESUMO

The tumor suppressor PTEN is mutated or deleted in many tumors, causing the activation of the PI3K pathway. Here, we show that the loss of PTEN increases the transcriptional activity of hypoxia-inducible factor 1 (HIF-1) through the inactivation of Forkhead transcription factors (FOXO) in PTEN-null cells. Reintroduction of PTEN into the nucleus, overexpression of a nonphosphorylatable FOXO3a, which accumulates in the nucleus, or inhibition of nuclear export of FOXO3a by leptomycin B represses HIF-1 transcriptional activity in PTEN-null cells. HIF-1 transcriptional activity increases in PTEN-positive cells depleted of FOXO3a with siRNA. PTEN and FOXO3a regulate the transactivation domain of HIF-1alpha. Chromatin immunoprecipitation indicates that FOXO3a complexes with HIF-1alpha and p300 on the Glut-1 promoter, a HIF-1 target gene. Overexpression of p300 reverses FOXO3a-mediated repression of HIF-1 transcriptional activity. Coimmunoprecipitation and GAL4-HIF-1alpha transactivation assays reveal that FOXO3a interferes with p300-dependent HIF-1 transcriptional activity. Thus, FOXO3a negatively regulates HIF-1 transcriptional activity.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transcrição Gênica/genética , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética
8.
Proc Natl Acad Sci U S A ; 105(1): 174-9, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18172210

RESUMO

Hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development and progression by regulating genes that are vital for proliferation, glycolysis, angiogenesis, and metastasis. To identify strategies of targeting the HIF-1 pathway, we screened a siRNA library against the entire druggable genome and a small-molecule library consisting of 691,200 compounds using a HIF-1 reporter cell line. Although the siRNA library screen failed to reveal any druggable targets, the small-molecule library screen identified a class of alkyliminophenylacetate compounds that inhibit hypoxia-induced HIF-1 reporter activity at single-digit nanomolar concentrations. These compounds were found to inhibit hypoxia but not deferoxamine-induced HIF-1alpha protein stabilization. Further analysis indicated that the alkyliminophenylacetate compounds likely inhibit the HIF-1 pathway through blocking the hypoxia-induced mitochondrial reactive oxygen species (ROS) production. Strikingly, all of the nonalkyliminophenylacetate HIF-1 inhibitors identified from the small-molecule library screen were also found to target mitochondria like the alkyliminophenylacetate compounds. The exclusive enrichment of mitochondria inhibitors from a library of >600,000 diverse compounds by using the HIF-1 reporter assay highlights the essential role of mitochondria in HIF-1 regulation. These results also suggest that targeting mitochondrial ROS production might be a highly effective way of blocking HIF-1 activity in tumors.


Assuntos
Biblioteca Gênica , Genômica/métodos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Mitocôndrias/metabolismo , Bibliotecas de Moléculas Pequenas , Acetatos/química , Química Farmacêutica/métodos , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Modelos Biológicos , Proteínas Nucleares/química , Farmacogenética/métodos , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio , Tecnologia Farmacêutica/métodos
9.
J Thorac Dis ; 13(2): 986-994, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33717571

RESUMO

BACKGROUND: Lung cancer death rates and incidence in both men and women have decreased over the past two decades. However, certain subsets of non-small cell lung cancer (NSCLC) have arisen with poor outcomes. Identifying factors which contribute to poorer outcomes as well as those that inform early detection strategies remain unmet needs. We present data from a contemporaneous group of NSCLC patients that received care at a single University teaching hospital to understand clinical and pathological factors influencing outcomes in the past decade. METHODS: A cohort of 2,289 patients with NSCLC who established care at the Rogel Cancer Center, University of Michigan between January 2011 and April 2019 were identified. Patient characteristics and clinical outcomes were recorded using electronic health records. The Kaplan-Meier method and the Cox proportional model were used to assess relationship between clinic-pathological factors and survival. RESULTS: Of the 2,289 patients, 92% were >50 years of age while 8% were <50 years of age. The majority (70%) of older patients were former smokers. The majority (61%) of younger patients were diagnosed as having Stage IV NSCLC. Among younger patients, 87% had histologically confirmed non-squamous histology. Univariate analysis revealed that overall survival was significantly lower in patients diagnosed with pneumonia prior to the diagnosis of NSCLC than in those who were not diagnosed with pneumonia (1.9 vs. 21.8 months; P<0.001). Multivariate analysis revealed that older patients had poorer survival than younger patients (HR 1.57, 95% CI: 1.10-2.06, P=0.01) and that patients diagnosed with pneumonia prior to their lung cancer diagnosis had poorer survival across all age groups, particularly in those with advanced-stage disease. CONCLUSIONS: Findings from this study merit prospective studies to understand cost-benefit ratio of follow- up cross sectional imaging of all patients diagnosed with unprovoked pneumonia, including in younger non/current smokers.

10.
FASEB J ; 23(3): 783-94, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18948382

RESUMO

Senescence is a potential tumor-suppressing mechanism and a commonly used model of cellular aging. One current hypothesis to explain senescence, based in part on the correlation of oxygen with senescence, postulates that it is caused by oxidative damage from reactive oxygen species (ROS). Here, we further test this theory by determining the mechanisms of hyperoxia-induced senescence. Exposure to 70% O(2) led to stress-induced, telomere-independent senescence. Although hyperoxia elevated mitochondrial ROS production, overexpression of antioxidant proteins was not sufficient to prevent hyperoxia-induced senescence. Hyperoxia activated AMPK; however, overexpression of a kinase-dead mutant of LKB1, which prevented AMPK activation, did not prevent hyperoxia-induced senescence. Knocking down p21 via shRNA, or suppression of the p16/pRb pathway by either BMI1 or HPV16-E7 overexpression, was also insufficient to prevent hyperoxia-induced senescence. However, suppressing p53 function resulted in partial rescue from senescence, suggesting that hyperoxia-induced senescence involves p53. Suppressing both the p53 and pRb pathways resulted in almost complete protection, indicating that both pathways cooperate in hyperoxia-induced senescence. Collectively, these results indicate a ROS-independent but p53/pRb-dependent senescence mechanism during hyperoxia.


Assuntos
Senescência Celular/fisiologia , Hiperóxia , Mitocôndrias/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Células Cultivadas , Citosol/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Pulmão/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/genética , Ribonucleotídeos , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética
11.
Cell Mol Life Sci ; 66(23): 3663-73, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19629388

RESUMO

Historically, it has been assumed that oxidative stress contributes to tumor initiation and progression solely by inducing genomic instability. Recent studies indicate that reactive oxygen species are upregulated in tumors and can lead to aberrant induction of signaling networks that cause tumorigenesis and metastasis. Here we review the role of redox-dependent signaling pathways and transcription factors that regulate tumorigenesis.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proliferação de Células , Dano ao DNA , Instabilidade Genômica , Humanos , Proteínas Mitocondriais/genética , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes/fisiologia , Oxirredução , Fatores de Transcrição/fisiologia
12.
Cancers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375062

RESUMO

Lung cancer is the leading cause of cancer-related death. Over the past 5-10 years lung cancer outcomes have significantly improved in part due to better treatment options including immunotherapy and molecularly targeted agents. Unfortunately, the majority of lung cancer patients do not enjoy durable responses to these new treatments. Seminal research demonstrated the importance of the gut microbiome in dictating responses to immunotherapy in melanoma patients. However, little is known regarding how other sites of microbiota in the human body affect tumorigenesis and treatment responses. The lungs were traditionally thought to be a sterile environment; however, recent research demonstrated that the lung contains its own dynamic microbiota that can influence disease and pathophysiology. Few studies have explored the role of the lung microbiome in lung cancer biology. In this review article, we discuss the links between the lung microbiota and cancer, with particular focus on immune responses, metabolism and strategies to target the lung microbiome for cancer prevention.

13.
Drug Discov Today ; 25(2): 305-320, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31811941

RESUMO

Synthetic lethality occurs between two genes when silencing of either gene alone enables viable outcomes but inhibition of both is lethal. Understanding context-dependent functioning of synthetic lethality allows therapeutic targeting in cancer. Furthermore, the paradigm shift toward precision medicine to treat cancer necessitates the establishment of biomarkers to help determine which patient populations might respond to specific drug combinations. Elucidating synthetically lethal gene combinations in cancer could establish clinically relevant drug combinations as well as biomarkers to better treat patients. Here, we have reviewed the recent synthetically lethal gene combinations in preclinical and clinical settings and discuss how this approach could help reveal potential biomarkers.


Assuntos
Neoplasias/terapia , Medicina de Precisão , Animais , Biomarcadores , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Mutações Sintéticas Letais
14.
Expert Opin Pharmacother ; 21(8): 941-952, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32164461

RESUMO

INTRODUCTION: Cyclin-dependent kinases (CDKs) are critical regulators of cell cycle progression in both normal and malignant cells, functioning through complex molecular interactions. Deregulation of CDK-dependent pathways is commonly found in both non-small cell and small cell lung cancer, and these derangements suggest vulnerabilities that can be exploited for clinical benefit. AREAS COVERED: In this review, the authors present an overview of the biology of CDKs in normal and malignant cells, with a focus on lung cancer, followed by an assessment of preclinical work that has demonstrated the vital role of CDKs in lung cancer development and progression, and the activity of CDK inhibitors in a variety of lung cancer models. Finally, the experience with clinical trials of CDK inhibitors in lung cancer is discussed along with the current status of these agents in cancer therapy. EXPERT OPINION: Despite strong biological rationale and promising preclinical studies, the results of clinical trials of CDK inhibitors in lung cancer have thus far been disappointing. Further clinical development of CDK inhibitors in lung cancer will depend on the identification of predictive biomarkers and the design of combination regimens that take advantage of the unique molecular alterations that drive lung cancer growth and survival.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Ciclinas/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Carcinoma de Pequenas Células do Pulmão/enzimologia , Carcinoma de Pequenas Células do Pulmão/patologia , Resultado do Tratamento
15.
Clin Cancer Res ; 14(2): 388-95, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18223213

RESUMO

PURPOSE: Since the identification of PRKAR1A mutations in Carney complex, substitutions and small insertions/deletions have been found in approximately 70% of the patients. To date, no germ-line PRKAR1A deletion and/or insertion exceeded a few base pairs (up to 15). Although a few families map to chromosome 2, it is possible that current sequencing techniques do not detect larger gene changes in PRKAR1A -- mutation-negative individuals with Carney complex. EXPERIMENTAL DESIGN: To screen for gross alterations of the PRKAR1A gene, we applied Southern hybridization analysis on 36 unrelated Carney complex patients who did not have small intragenic mutations or large aberrations in PRKAR1A, including the probands from two kindreds mapping to chromosome 2. RESULTS: We found large PRKAR1A deletions in the germ-line of two patients with Carney complex, both sporadic cases; no changes were identified in the remaining patients, including the two chromosome-2-mapping families. In the first patient, the deletion is expected to lead to decreased PRKAR1A mRNA levels but no other effects on the protein; the molecular phenotype is predicted to be PRKAR1A haploinsufficiency, consistent with the majority of PRKAR1A mutations causing Carney complex. In the second patient, the deletion led to in-frame elimination of exon 3 and the expression of a shorter protein, lacking the primary site for interaction with the catalytic protein kinase A subunit. In vitro transfection studies of the mutant PRKAR1A showed impaired ability to bind cyclic AMP and activation of the protein kinase A enzyme. The patient bearing this mutation had a more-severe-than-average Carney complex phenotype that included the relatively rare psammomatous melanotic schwannoma. CONCLUSIONS: Large PRKAR1A deletions may be responsible for Carney complex in patients that do not have PRKAR1A gene defects identifiable by sequencing. Preliminary data indicate that these patients may have a different phenotype especially if their defect results in an expressed, abnormal version of the PRKAR1A protein.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Deleção de Genes , Neoplasia Endócrina Múltipla/genética , Linhagem Celular , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Éxons , Humanos
16.
Lung Cancer (Auckl) ; 10: 47-56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239797

RESUMO

Until recently, the treatment of patients with advanced non-small-cell lung cancer (NSCLC) whose tumors did not have a targetable genetic alteration was cytotoxic chemotherapy alone. This treatment provided only modest survival benefit. The introduction of immune checkpoint inhibitors targeting programmed cell death 1 protein (PD-1) signaling pathway in the treatment of patients with NSCLC has had significant effect on patient survival. Atezolizumab, nivolumab and pembrolizumab have been shown to be superior to chemotherapy in patients with recurrent NSCLC. Recently, pembrolizumab has been combined with chemotherapy in the front-line setting and has demonstrated an improvement in overall survival in NSCLC patients as compared to chemotherapy alone. In this review we will focus on the clinical trials that led to approval of combination pembrolizumab and chemotherapy as first-line treatment for patients with advanced NSCLC as well as discuss other combinations of immunotherapy and chemotherapy that have also been evaluated.

17.
Cancers (Basel) ; 11(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426364

RESUMO

Reactive oxygen species (ROS) are important signaling molecules in cancer. The level of ROS will determine physiological effects. While high levels of ROS can cause damage to tissues and cell death, low levels of ROS can have a proliferative effect. ROS are produced by tumor cells but also cellular components that make up the tumor microenvironment (TME). In this review, we discuss the mechanisms by which ROS can affect the TME with particular emphasis on tumor-infiltrating leukocytes. Greater insight into ROS biology in this setting may allow for therapeutic manipulation of ROS levels in order to remodel the tumor microenvironment and increase anti-tumor activity.

18.
Cell Metab ; 30(2): 385-401.e9, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390551

RESUMO

The mechanisms by which steatosis of the liver progresses to non-alcoholic steatohepatitis and end-stage liver disease remain elusive. Metabolic derangements in hepatocytes controlled by SIRT1 play a role in the development of fatty liver in inbred animals. The ability to perform similar studies using human tissue has been limited by the genetic variability in man. We generated human induced pluripotent stem cells (iPSCs) with controllable expression of SIRT1. By differentiating edited iPSCs into hepatocytes and knocking down SIRT1, we found increased fatty acid biosynthesis that exacerbates fat accumulation. To model human fatty livers, we repopulated decellularized rat livers with human mesenchymal cells, fibroblasts, macrophages, and human SIRT1 knockdown iPSC-derived hepatocytes and found that the human iPSC-derived liver tissue developed macrosteatosis, acquired proinflammatory phenotype, and shared a similar lipid and metabolic profiling to human fatty livers. Biofabrication of genetically edited human liver tissue may become an important tool for investigating human liver biology and disease.


Assuntos
Engenharia Celular , Fígado Gorduroso/metabolismo , Células-Tronco Pluripotentes/metabolismo , Sirtuína 1/metabolismo , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Ácidos Graxos/biossíntese , Humanos , Masculino , Células-Tronco Pluripotentes/citologia , Ratos , Ratos Sprague-Dawley , Sirtuína 1/deficiência , Sirtuína 1/genética
19.
Mol Cancer Ther ; 5(7): 1783-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16891464

RESUMO

Enzastaurin (LY317615), an acyclic bisindolylmaleimide, is an oral inhibitor of the protein kinase Cbeta isozyme. The objective of this study was to assess the efficacy of enzastaurin in inducing apoptosis in multiple myeloma (MM) cell lines and to investigate possible mechanisms of apoptosis. Cell proliferation assays were done on a variety of MM cell lines with unique characteristics (dexamethasone sensitive, dexamethasone resistant, chemotherapy sensitive, and melphalan resistant). The dexamethasone-sensitive MM.1S cell line was used to further assess the effect of enzastaurin in the presence of dexamethasone, insulin-like growth factor-I (IGF-I), interleukin-6, and the pan-specific caspase inhibitor ZVAD-fmk. Enzastaurin increased cell death in all cell lines at clinically significant low micromolar concentrations (1-3 micromol/L) after 72 hours of treatment. Dexamethasone and enzastaurin were shown to have an additive effect on MM.1S cell death. Although IGF-I blocked the effect of 1 micromol/L enzastaurin, IGF-I did not abrogate cell death induced with 3 mumol/L enzastaurin. Moreover, enzastaurin-induced cell death was not affected by interleukin-6 or ZVAD-fmk. GSK3beta phosphorylation, a reliable pharmacodynamic marker for enzastaurin activity, and AKT phosphorylation were both decreased with enzastaurin treatment. These data indicate that enzastaurin induces apoptosis in MM cell lines in a caspase-independent manner and that enzastaurin exerts its antimyeloma effect by inhibiting signaling through the AKT pathway.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Mieloma Múltiplo/enzimologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose , Inibidores de Caspase , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dexametasona/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Interleucina-6/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C beta , Transdução de Sinais/efeitos dos fármacos
20.
Mol Cell Endocrinol ; 249(1-2): 99-106, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16530935

RESUMO

Previous studies have shown that insulin augments GnRH-stimulated LH synthesis and release from primary gonadotrophs. In this study, regulation of LHbeta gene expression by GnRH and insulin was examined in LbetaT2 cells. Endogenous LHbeta mRNA is stimulated 2.4-fold by insulin alone, 2.6-fold by GnRH alone, and 4.7-fold by insulin together with GnRH. This effect of insulin, like GnRH, mapped to sequences -140 to +1 in the mouse LHbeta gene. Insulin together with GnRH stimulates activity of an LHbeta-reporter gene 7.1-fold; whereas, GnRH alone or insulin alone stimulates the reporter activity 2.8- and 3.1-fold, respectively. Blocking the binding of Egr-1 to sequences -51 to -42 in the LHbeta gene inhibits effects of insulin and GnRH. Insulin together with GnRH increases Egr-1 mRNA levels and total Egr-1 binding to LHbeta DNA. These findings indicate that insulin may impact regulation of the reproductive axis at the level of the pituitary.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Insulina/farmacologia , Hormônio Luteinizante Subunidade beta/genética , Animais , Sítios de Ligação , Linhagem Celular , Sinergismo Farmacológico , Proteína 1 de Resposta de Crescimento Precoce/química , Proteína 1 de Resposta de Crescimento Precoce/genética , Hormônio Liberador de Gonadotropina/fisiologia , Hormônio Luteinizante Subunidade beta/metabolismo , Camundongos , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA