Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(8)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270972

RESUMO

Knee joint contact forces are commonly estimated via surrogate measures (i.e., external knee adduction moments or musculoskeletal modeling). Despite its capabilities, modeling is not optimal for clinicians or persons with limited experience. The purpose of this study was to design a novel prediction method for knee joint contact forces that is simplistic in terms of required inputs. This study included marker trajectories and instrumented knee forces during normal walking from the "Grand Challenge" (n = 6) and "CAMS" (n = 2) datasets. Inverse kinematics were used to derive stance phase hip (sagittal, frontal, transverse), knee (sagittal, frontal), ankle (sagittal), and trunk (frontal) kinematics. A long-short term memory network (LSTM) was created using matlab to predict medial and lateral knee force waveforms using combinations of the kinematics. The Grand Challenge and CAMS datasets trained and tested the network, respectively. Musculoskeletal modeling forces were derived using static optimization and joint reaction tools in OpenSim. Waveform accuracy was determined as the proportion of variance and root-mean-square error between network predictions and in vivo data. The LSTM network was highly accurate for medial forces (R2 = 0.77, RMSE = 0.27 BW) and required only frontal hip and knee and sagittal hip and ankle kinematics. Modeled medial force predictions were excellent (R2 = 0.77, RMSE = 0.33 BW). Lateral force predictions were poor for both methods (LSTM R2 = 0.18, RMSE = 0.08 BW; modeling R2 = 0.21, RMSE = 0.54 BW). The designed LSTM network outperformed most reports of musculoskeletal modeling, including those reached in this study, revealing knee joint forces can accurately be predicted by using only kinematic input variables.


Assuntos
Marcha , Modelos Biológicos , Humanos , Fenômenos Biomecânicos , Articulação do Joelho , Redes Neurais de Computação , Caminhada
2.
J Appl Biomech ; 38(3): 179-189, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588765

RESUMO

Patients following unilateral total knee arthroplasty (TKA) display interlimb differences in knee joint kinetics during gait and more recently, stationary cycling. The purpose of this study was to use musculoskeletal modeling to estimate total, medial, and lateral tibiofemoral compressive forces for patients following TKA during stationary cycling. Fifteen patients of unilateral TKA, from the same surgeon, participated in cycling at 2 workrates (80 and 100 W). A knee model (OpenSim 3.2) was used to estimate total, medial, and lateral tibiofemoral compressive forces for replaced and nonreplaced limbs. A 2 × 2 (limb × workrate) and a 2 × 2 × 2 (compartment × limb × workrate) analysis of variance were run on the selected variables. Peak medial tibiofemoral compressive force was 23.5% lower for replaced compared to nonreplaced limbs (P = .004, G = 0.80). Peak medial tibiofemoral compressive force was 48.0% greater than peak lateral tibiofemoral compressive force in nonreplaced limbs (MD = 344.5 N, P < .001, G = 1.6) with no difference in replaced limbs (P = .274). Following TKA, patients have greater medial compartment loading on their nonreplaced compared to their replaced limbs and ipsilateral lateral compartment loading. This disproportionate loading may be cause for concern regarding exacerbating contralateral knee osteoarthritis.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Caminhada
3.
J Biomech Eng ; 143(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734282

RESUMO

Alterations of foot rotation angles have successfully reduced external knee adduction moments during walking and running. However, reductions in knee adduction moments may not result in reductions in knee joint reaction forces. The purpose of this study was to examine the effects of internal and external foot rotation on knee, hip, and ankle joint reaction forces during running. Motion capture and force data were recorded of 19 healthy adults running at 3.35 m/s during three conditions: (1) preferred (normal) and with (2) internal and (3) external foot rotation. Musculoskeletal simulations were performed using opensim and the Rajagopal 2015 model, modified to a two degree-of-freedom knee joint. Muscle excitations were derived using static optimization, including muscle physiology parameters. Joint reaction forces (i.e., the total force acting on the joints) were computed and compared between conditions using one-way analyses of variance (ANOVAs) via statistical parametric mapping (SPM). Internal foot rotation reduced resultant hip forces (from 18% to 23% stride), while external rotation reduced resultant ankle forces (peak force at 20% stride) during the stance phase. Three-dimensional and resultant knee joint reaction forces only differed at very early and very late stance phase. The results of this study indicate, similar to previous findings, that reductions in external knee adduction moments do not mirror reductions in knee joint reaction forces.


Assuntos
Articulação do Tornozelo , Adulto , Humanos , Corrida , Caminhada
4.
J Biomech Eng ; 143(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34159353

RESUMO

Many unilateral total knee replacement (TKR) patients will need a contralateral TKR. Differences in knee joint biomechanics between bilateral patients and unilateral patients are not well established. The purpose of this study was to examine knee joint differences in level walking between bilateral and unilateral patients, and asymptomatic controls, using principal component analysis. Knee joints of 1st replaced limbs of 15 bilateral patients (69.40 ± 5.04 years), 15 replaced limbs of unilateral patients (66.47 ± 6.15 years), and 15 asymptomatic controls (63.53 ± 9.50 years) were analyzed during level walking. Principal component analysis examined knee joint sagittal- and frontal-plane kinematics and moments, and vertical ground reaction force (GRF). A one-way analysis of variance analyzed differences between principal component scores of each group. TKR patients exhibited more flexed and abducted knees throughout stance, decreased sagittal knee range of motion (ROM), increased early-stance adduction ROM, decreased loading-response knee extension and push-off knee flexion moments, decreased loading-response and push-off peak knee abduction moment (KAbM), increased KAbM at midstance, increased midstance vertical GRF, and decreased loading-response and push-off vertical GRF. Additionally, bilateral patients exhibited reduced sagittal knee ROM, increased adduction ROM, decreased sagittal knee moments throughout stance, decreased KAbM throughout stance, an earlier loading-response peak vertical GRF, and a decreased push-off vertical GRF, compared to unilateral patients. TKR patients, especially bilateral patients had stiff knee motion in the sagittal-plane, increased frontal-plane joint laxity, and a quadriceps avoidance gait.


Assuntos
Artroplastia do Joelho
5.
J Sports Sci ; 39(6): 618-628, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33161872

RESUMO

Including an unanticipated stimulus has significant impacts on lower extremity biomechanics during dynamic movements. It is unknown how a live, human defender affects lower extremity biomechanics. The purpose of this study was thus to determine the effects of two types of unanticipated stimuli (visual stimulus; defensive opponent) on lower extremity kinematics and kinetics in males and females during 45° sidestepping trials. Eight males and eight females completed two unanticipated stimuli sidestepping conditions. Numeric visual analog scales for reaction difficulty and movement realism were collected and analysed using a 2 × 2 mixed-model ANOVA. Three-dimensional hip, knee, and ankle kinematics and kinetics were measured during the stance phase of the sidestep and analysed using statistical parametric mapping. Participants reported greater difficulty and less realistic movements with the visual stimulus. Unanticipated stimulus main effects were observed for knee abduction angle, and hip extension and adduction, and knee extension and adduction moments. Sex main effects were observed for hip flexion, hip abduction, and ankle dorsiflexion angles, as well as hip abduction, ankle plantarflexion and ankle eversion moments and vertical ground reaction forces. Participants responded differently to two unanticipated stimuli. Careful consideration should be used when determining the type of unanticipated stimulus used.


Assuntos
Extremidade Inferior/fisiologia , Movimento/fisiologia , Corrida/fisiologia , Adulto , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Traumatismos em Atletas/fisiopatologia , Fenômenos Biomecânicos , Feminino , Humanos , Cinética , Masculino , Fatores de Risco , Fatores Sexuais , Adulto Jovem
6.
J Appl Biomech ; 37(4): 333-342, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33931575

RESUMO

Decreased dorsiflexion range of motion (DROM) can be modified using static stretching and joint mobilizations and may attenuate known knee anterior cruciate ligament injury risk factors. It is not known how these interventions compare to each other and how they improve knee landing mechanics. This study's purpose was to determine the immediate effects of static stretching and joint mobilization interventions on DROM measurement changes and right-leg drop jump knee landing mechanics. Eighteen females and 7 males, all recreationally active, completed 2 study sessions. Active and passive DROM, the weight-bearing lunge test, the anterior reach portion of the Star Excursion Balance Test, and a right-leg drop jump landing task were completed before and after the intervention. Change in DROM (ΔDROM) was calculated for DROM assessments between preintervention and postintervention. Pairwise dependent t tests determined no differences in ΔDROM between interventions, and statistical parametric mapping determined increased knee flexion (P = .004) and decreased anterior shear force (P = .015) during landing after both interventions. Increased DROM improves sagittal plane displacement and loading at the knee. Stretching may be a more feasible option in a healthy population for those wanting to maintain range of motion and decrease knee injury risk without physical therapist involvement.


Assuntos
Tornozelo , Lesões do Ligamento Cruzado Anterior , Adulto , Articulação do Tornozelo , Lesões do Ligamento Cruzado Anterior/prevenção & controle , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho , Masculino , Amplitude de Movimento Articular
7.
J Biomech Eng ; 142(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513696

RESUMO

Although predicted hip joint center (HJC) locations are known to vary widely between functional methods, no previous investigation has detailed functional method-dependent hip and knee biomechanics. The purpose of this study was to define a normative database of hip joint biomechanics during dynamic movements based upon functional HJC methods and calibration tasks. Thirty healthy young adults performed arc, star arc, and two-sided calibration tasks. Motion capture and ground reaction forces were collected during walking, running, and single-leg landings (SLLs). Two sphere-fit (geometric and algebraic) and two coordinate transformation techniques were implemented using each calibration (12 total method-calibration combinations). Surprisingly, the geometric fit-two-sided model placed the HJC at the midline of the pelvis and above the iliac spines, and thus was removed from analyses. A database of triplanar hip and knee kinematics and hip moments and powers was constructed using the mean of all subjects for the eleven method-calibration combinations. A nested analysis of variance approach compared calibration [method] peak hip kinematics and kinetics. Most method differences existed between geometric fit and coordinate transformations (58 of 84 total). No arc-star arc differences were found. Thirty-two differences were found between the two-sided and arc/star arc calibrations. This database of functional method based hip and knee biomechanics serves as an important reference point for interstudy comparisons. Overall, this study illustrates that functional HJC method can dramatically impact hip biomechanics and should be explicitly detailed in future work.


Assuntos
Articulação do Joelho , Fenômenos Biomecânicos , Calibragem , Humanos , Amplitude de Movimento Articular , Caminhada
8.
J Appl Biomech ; 36(5): 292-297, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781436

RESUMO

The purpose of this study was to investigate effects of preferred step width and increased step width modification on knee biomechanics of obese and healthy-weight participants during incline and decline walking. Seven healthy-weight participants and 6 participants who are obese (body mass index ≥ 30) performed 5 walking trials on level ground and a 10° inclined and declined instrumented ramp system at both preferred and wide step-widths. A 2 × 2 (step-width × group) mixed-model analysis of variance was used to examine selected variables. There were significant increases in step-width between the preferred and wide step-width conditions for all 3 walking conditions (all P < .001). An interaction was found for peak knee extension moment (P = .048) and internal knee abduction moment (KAM) (P = .025) in uphill walking. During downhill walking, there were no interaction effects. As step-width increased, KAM was reduced (P = .007). In level walking, there were no interaction effects for peak medial ground reaction force and KAM (P = .007). There was a step-width main effect for KAM (P = .007). As step-width increased, peak medial ground reaction force and peak knee extension moment increased, while KAM decreased for both healthy weight and individuals who are obese. The results suggest that increasing step-width may be a useful strategy for reducing KAM in healthy and young populations.

9.
J Appl Biomech ; 35(2): 101-106, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300057

RESUMO

To examine the relationship between anterior cruciate ligament injury risk factors in unanticipated cutting and decelerating. Three-dimensional kinematics and ground reaction forces were collected on 11 females (22 [2] y, 1.67 [0.08] m, and 68.5 [9.8] kg) during 2 unanticipated tasks. Paired samples t tests were performed to compare dependent variables between tasks. Spearman rank correlation coefficients were calculated to analyze the relationship between peak internal knee adduction moment and peak anterior tibial shear force (ASF) during 2 unanticipated tasks. Significantly greater knee abduction angles, peak knee adduction moments, and peak ASFs were observed during cutting (P ≤ .05). A strong positive correlation existed between decelerating ASF and cutting ASF (ρ = .67), while correlations between decelerating knee adduction moment and cutting knee adduction moment and decelerating ASF and cutting knee adduction moment were not significant. In situations where time management is a necessity and only one task can be evaluated, it may be more appropriate to utilize an unanticipated cutting task rather than an unanticipated deceleration task because of the increased knee adduction moment and ASF. These data can help future clinicians in better designing more effective anterior cruciate ligament injury risk screening methods.


Assuntos
Lesões do Ligamento Cruzado Anterior/etnologia , Desaceleração , Articulação do Joelho/fisiopatologia , Corrida/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Fatores de Risco , Adulto Jovem
10.
J Biomech Eng ; 140(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29560494

RESUMO

Static frontal plane tibiofemoral alignment is an important factor in dynamic knee alignment and knee adduction moments (KAMs). However, little is known about the relationship between alignment and compartment contact forces or muscle control strategies. The purpose of this study was to estimate medial (MCF) and lateral (LCF) compartment knee joint contact forces and muscle forces during stair ascent using a musculoskeletal model implementing subject-specific knee alignments. Kinematic and kinetic data from 20 healthy individuals with radiographically confirmed varus or valgus knee alignments were simulated using alignment specific models to predict MCFs and LCFs. Muscle forces were determined using static optimization. Independent samples t-tests compared contact and muscle forces between groups during weight acceptance and during pushoff. The varus group exhibited increased weight acceptance peak MCFs, while the valgus group exhibited increased pushoff peak LCFs. The varus group utilized increased vasti muscle forces during weight acceptance and adductor forces during pushoff. The valgus group utilized increased abductor forces during pushoff. The alignment-dependent contact forces provide evidence of the significance of frontal plane knee alignment in healthy individuals, which may be important in considering future knee joint health. The differing muscle control strategies between alignments detail-specific neuromuscular responses to control frontal plane knee loads.

11.
J Sports Sci ; 35(2): 166-174, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26986543

RESUMO

Limb dominance theory suggests that females tend to be more one-leg dominant and exhibit greater kinematic and kinetic leg asymmetries than their male counterparts, contributing to the increased risk of anterior cruciate ligament injury among female athletes. Thus, the purpose of this study was to examine the influences of sex and limb dominance on lower extremity joint mechanics during unilateral land-and-cut manoeuvres. Twenty-one women and 21 men completed land-and-cut manoeuvres on their dominant limb as well as their nondominant limb. Three-dimensional kinematics and kinetics were calculated bilaterally for the entire stance phase of the manoeuvre. Women performed land-and-cut manoeuvres with altered hip motions and loads as well as greater knee abduction at touchdown compared to men. Dominant limb land-and-cut manoeuvres where characterised by decreased hip flexion at touchdown as well as decreased hip flexion and adduction range of motion compared to nondominant land-and-cuts regardless of sex. The observed sex differences are consistent with previous research regarding mechanisms underlying the sex disparity in anterior cruciate ligament injury rates. However, observed differences regarding limb dominances appear somewhat arbitrary and did not suggest that the dominant or nondominant limb would be at increased risk of anterior cruciate ligament injury.


Assuntos
Lateralidade Funcional/fisiologia , Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Movimento/fisiologia , Adolescente , Adulto , Lesões do Ligamento Cruzado Anterior/etiologia , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Amplitude de Movimento Articular , Fatores de Risco , Fatores Sexuais , Adulto Jovem
12.
J Biomech Eng ; 138(1)2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611439

RESUMO

This paper studies the modeling of lower extremity muscle forces and their correlation to neuromuscular fatigue. Two analytical fatigue models were combined with a musculoskeletal model to estimate the effects of hamstrings fatigue on lower extremity muscle forces during a side step cut. One of the fatigue models (Tang) used subject-specific knee flexor muscle fatigue and recovery data while the second model (Xia) used previously established fatigue and recovery parameters. Both fatigue models were able to predict hamstrings fatigue within 20% of the experimental data, with the semimembranosus and semitendinosus muscles demonstrating the largest (11%) and smallest (1%) differences, respectively. In addition, various hamstrings fatigue levels (10-90%) on lower extremity muscle force production were assessed using one of the analytical fatigue models. As hamstrings fatigue levels increased, the quadriceps muscle forces decreased by 21% (p < 0.01), while gastrocnemius muscle forces increased by 36% (p < 0.01). The results of this study validate the use of two analytical fatigue models in determining the effects of neuromuscular fatigue during a side step cut, and therefore, this model can be used to assess fatigue effects on risk of lower extremity injury during athletic maneuvers. Understanding the effects of fatigue on muscle force production may provide insight on muscle group compensations that may lead to altered lower extremity motion patterns as seen in noncontact anterior cruciate ligament (ACL) injuries.


Assuntos
Simulação por Computador , Perna (Membro)/fisiologia , Fadiga Muscular , Feminino , Humanos , Modelos Biológicos , Músculo Esquelético/fisiologia , Adulto Jovem
13.
J Appl Biomech ; 31(2): 102-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25411821

RESUMO

The aim of this study was to determine the effects of hamstrings fatigue on lower extremity joint coordination variability during a sidestep cutting maneuver. Twenty female recreational athletes performed five successful trials of a sidestep cutting task pre- and postfatigue. Each participant completed an isolated hamstrings fatigue protocol consisting of isokinetic maximum effort knee flexion and passive extension contractions. Vector coding was used to examine hip and knee joint couplings (consisting of various planar motions) during the impact and weight acceptance phases of the sidestep cut stance phase. Paired t tests were used to analyze differences of each phase as an effect of fatigue, where alpha was set a priori at .05. The hip rotation/knee rotation coupling exhibited a significant decrease in coordination variability as a function of fatigue in both the impact (P = .015) and weight acceptance phases (P = .043). Similarly, the hip adduction-abduction/knee rotation coupling exhibited a significant decrease in coordination variability in the weight acceptance phase (P = .038). Hamstrings fatigue significantly decreased coordination variability within specific lower extremity joint couplings that included knee rotation. Future studies should be conducted to determine if this decrease in coordination variability is related to lower extremity injury mechanisms.


Assuntos
Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Corrida/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Modelos Biológicos , Contração Muscular/fisiologia , Equilíbrio Postural/fisiologia
14.
J Biomech ; 165: 112026, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417193

RESUMO

Induced acceleration analyses have expanded our understanding on the contributions of muscle forces to center of mass and segmental kinematics during a myriad of tasks. While these techniques have identified a subset of major muscle that contribute to locomotion, most analyses have included models with only one frontal plane degree of freedom (dof) actuated by the hip joint. The purpose of this study was to define the impact of including knee and subtalar joint frontal plane dof on model superposition accuracy and muscle specific contributions to mediolateral accelerations. Induced acceleration analyses were performed using OpenSim with the Lai model on a freely available dataset of one subject running at 4 m/s. Analyses were performed on four models (standard, with subtalar joint, with frontal plane knee, and combined frontal plane knee with subtalar) with the kinematic constraint and perturbation analyses. Root mean square error and correlations were computed against experimental kinematics. Adding frontal plane dofs improved mediolateral acceleration correlations on average by > 0.25 while only minimally impacting errors. The constraints method performed better than the perturbation method for mediolateral accelerations. Including frontal plane knee dof resulted in muscle and method specific responses. All muscles presented with a complete flip of polarity for constraint method, imparted by allowing the medial/lateral muscles to contribute according to their anatomical function. Only the gluteus medius flipped for the perturbation method. This study provides significant support for the inclusion of frontal plane knee and subtalar dof and the need for reevaluation of muscle contributions via induced acceleration.


Assuntos
Articulação do Joelho , Joelho , Humanos , Articulação do Joelho/fisiologia , Joelho/fisiologia , Movimento/fisiologia , Extremidade Inferior , Coxa da Perna , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos
15.
Bioengineering (Basel) ; 11(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39329621

RESUMO

Increasing inter-pedal distance (Q-Factor: QF) in cycling increases peak internal knee abduction moments (KAbM). The effect of smaller and normalized changes in QF has not been investigated. The purposes of this study were to examine changes in KAbM with small and normalized increases and whether static knee alignment accounts for any changes in knee biomechanics in cycling. Fifteen healthy participants were included (age: 22.7 ± 2.5 years, BMI: 23.95 ± 3.21 kg/m2). Motion capture and instrumented pedals collected kinematic and pedal reaction force (PRF) data, respectively, while participants cycled at five different QFs. Each participant's mechanical axis angle (MAA) was estimated using motion capture. Each participant's QFs were normalized by starting at 160 mm and increasing by 2% of the participant's leg length (L), where the five QF conditions were as follows: QF1 (160), QF2 (160 + 0.02 × L), QF3 (160 + 0.04 × L), QF4 (160 + 0.06 × L), and QF5 (160 + 0.08 × L). A linear mixed model was performed to detect differences between QF conditions. KAbM increased by more than 30% in QF5 from QF1, QF2, QF3, and QF4. Medial PRF increased by at least 20% in QF5 from QF1, QF2, and QF3. MAA had varying degrees of correlation with the variables of interest. These results suggest that KAbM is more sensitive to changes in QF at greater QF increases.

16.
Knee ; 50: 154-162, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178724

RESUMO

BACKGROUND: Soccer is one of the most popular sports worldwide, which subsequently increases the number of injuries experienced by players. Furthermore, a large percentage of all anterior cruciate ligament injuries occur while playing soccer. In order to more clearly understand injury mechanisms, it is important to make the testing environment as real-life as possible. Inclusion of an external focus and secondary task, such as heading a soccer ball, may increase joint loading during landing. The purpose of this study was to investigate the effect of a forward heading motion on lower extremity kinetics and kinematics between sexes during a stop-jump task and a jump-heading task. METHODS: Ten male and ten female soccer players performed stop-jumps with no soccer ball present and jump-headings with a soccer ball present. Three-dimensional kinematics and kinetics were collected and analyzed during the landing. 2 × 2 mixed design analysis of variances (ANOVA) were performed to examine sex × jump task interactions and determine the main effects of sex and jump task. RESULTS: Results indicated jump-heading yields greater peak vertical ground reaction forces, an 8% increase in peak knee extension moments, a reduced initial knee flexion angle by approximately 5°, and an increased initial hip flexion angle by approximately 7°. Additionally, females exhibited 5.6° greater peak knee abduction angles compared to men, regardless of task. CONCLUSIONS: Inclusion of an overhead target may have distracted the athletes from focusing on frontal plane knee control when landing, and could potentially lead to increased ACL stress.

17.
Equine Vet J ; 55(2): 171-181, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35569040

RESUMO

Equine tibial fractures are relatively infrequent in racing and non-racing sport horses, but limitations in successful treatment of tibial fractures in adult horses result in relatively high mortality compared with other musculoskeletal injuries. The aetiology of tibial fracture can be classified into two general categories: traumatic impact or fatigue failure. Tibial stress fractures, also known as fatigue fractures, are often rated as the second most common stress fracture in racing Thoroughbreds; young age, early stage in race training, and initiation of training after a period of rest are the reported risk factors. Both impact and fatigue fracture propagation are dependent on the magnitude of force applied and on the local composition/alignment of mineralised collagen in the tibial lamella. Extensive research has characterised the pattern of strain distribution and stress remodelling within the equine tibia, but in vivo measurement of load and angular moments are currently not feasible. Further research is warranted to correlate biomechanical theory of tibia fatigue fracture propagation with current histopathological data. Preventative measures for fatigue fractures aim to optimise diagnostic efficiency, reduce the interval between injury and diagnosis and modify racing and training conditions to reduce non-specific fracture risk. Treatment options for complete tibial fractures in adult horses are limited, but with careful case selection, successful outcomes have been reported after open reduction and internal fixation. On the other hand, tibial stress fractures and minimally displaced incomplete fractures are typically treated conservatively and have good prognosis for athletic recovery. This review aims to describe the current literature regarding tibial fracture aetiology, prevalence, risk factors, fracture biomechanics, treatment, prognosis and prevention.


Assuntos
Fraturas de Estresse , Doenças dos Cavalos , Condicionamento Físico Animal , Esportes , Fraturas da Tíbia , Cavalos , Animais , Fraturas de Estresse/diagnóstico , Fraturas de Estresse/veterinária , Condicionamento Físico Animal/efeitos adversos , Fraturas da Tíbia/veterinária , Fraturas da Tíbia/epidemiologia , Fraturas da Tíbia/etiologia , Prognóstico , Doenças dos Cavalos/terapia
18.
Sports Biomech ; 22(4): 494-509, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34549669

RESUMO

Changes in the workrate and seat position have been linked to changes in internal knee extension moment. However, there is limited research on effects of those changes on knee kinetics in recumbent bike. The purpose of this study was to examine the effects of different seat positions and workrates on KAbM, knee extension moment and perceived effort during stationary recumbent cycling. Fifteen cyclists cycled on a recumbent ergometer in 6 test conditions of pedalling in far, medium and close seat positions in each of the two workrates of 60 and 100 W at the cadence of 80 RPM. A three-dimensional motion analysis system and a pair of instrumented pedals collected kinematic and kinetic data. A 3 ×2 repeated measures ANOVA was used to examine the effect of seat positions and workrates on selected variables of interest. Different seat positions did not change either peak KAbM (p = 0.592) or knee extension moment (p = 0.132). Increased workrates significantly increased peak KAbM (p <0.001 and ηp2 =0.794) and knee extension moment (p <0.001 and ηp2=0.722). This study showed that the far or close seat position did not increase frontal-plane or overall knee joint loading and provided evidence for prescribing recumbent bike for healthy population.


Assuntos
Ciclismo , Articulação do Joelho , Humanos , Fenômenos Biomecânicos , Joelho ,
19.
Clin Biomech (Bristol, Avon) ; 102: 105900, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36739666

RESUMO

BACKGROUND: Downhill walking is a necessary part of daily life and an effective activity in post-operative rehabilitation following total knee arthroplasty. The purpose of this study was to determine differences in the behavior of total, medial, and lateral tibiofemoral compressive forces as well as knee extensor and flexor muscle forces between different limbs of patients with total knee arthroplasty (replaced, non-replaced) during downhill and level walking. METHODS: Musculoskeletal modeling and simulation were implemented to determine muscle forces and tibiofemoral compressive forces in 25 patients with total knee arthroplasty. A 2 × 2 [Limb (replaced, non-replaced) × Slope (0°, 10°)] Statistical parametric mapping repeated measures analysis of variance was conducted on selected variables. FINDINGS: Statistical parametric mapping did not identify any between-limb differences for compressive or muscle forces. Differences in joint compressive and muscle forces persisted throughout different intervals of stance-phase between level and downhill walking. Knee extensor muscle forces were distinctly greater during level walking for nearly all of stance phase. Knee flexor muscle force was greater during downhill walking for >60% of stance. Statistical parametric mapping did identify regions of significance between level and downhill walking that coincided temporally (near loading response and push off) with peak joint moment and joint compressive forces traditionally reported using discrete variable analyses. INTERPRETATION: Downhill walking may be a safe and useful rehabilitation tool for post-knee arthroplasty rehabilitation that will not disproportionally load either the replaced or the non-replaced joint and where the quadriceps muscles can be strengthened during a gait-specific task.


Assuntos
Artroplastia do Joelho , Humanos , Fenômenos Biomecânicos , Caminhada/fisiologia , Fenômenos Mecânicos , Articulação do Joelho/fisiologia , Marcha/fisiologia , Músculo Esquelético/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-37510574

RESUMO

The purpose of this study was to determine differences in total (TCF), medial compartment (MCF), and lateral compartment (LCF) tibiofemoral joint compressive forces and related muscle forces between replaced and non-replaced limbs during level and uphill walking at an incline of 10°. A musculoskeletal modeling and simulation approach using static optimization was used to determine the muscle forces and TCF, MCF, and LCF for 25 patients with primary TKA. A statistical parametric mapping repeated-measures ANOVA was conducted on knee compressive forces and muscle forces using statistical parametric mapping. Greater TCF, MCF, and LCF values were observed throughout the loading response, mid-stance, and late stance during uphill walking. During level walking, knee extensor muscle forces were greater throughout the first 50% of the stance during level walking, yet greater during uphill walking during the last 50% of the stance. Conversely, knee flexor muscle forces were greater through the loading response and push-off phases of the stance. No between-limb differences were observed for compressive or muscle forces, suggesting that uphill walking may promote a more balanced loading of replaced and non-replaced limbs. Additionally, patients with TKA appear to rely on the hamstrings muscle group during the late stance for knee joint control, thus supporting uphill walking as an effective exercise modality to improve posterior chain muscle strength.


Assuntos
Artroplastia do Joelho , Humanos , Fenômenos Biomecânicos , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiologia , Caminhada/fisiologia , Joelho , Músculo Esquelético/fisiologia , Marcha/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA