Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788477

RESUMO

I have spent more than the last 40 years at the University of California, San Francisco (UCSF), studying T cell receptor (TCR) signaling. I was blessed with supportive mentors, an exceptionally talented group of trainees, and wonderful collaborators and colleagues during my journey who have enabled me to make significant contributions to our understanding of how the TCR initiates signaling. TCR signaling events contribute to T cell development as well as to mature T cell activation and differentiation. Expected final online publication date for the Annual Review of Immunology, Volume 42 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
Annu Rev Immunol ; 36: 127-156, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29237129

RESUMO

T cells possess an array of functional capabilities important for host defense against pathogens and tumors. T cell effector functions require the T cell antigen receptor (TCR). The TCR has no intrinsic enzymatic activity, and thus signal transduction from the receptor relies on additional signaling molecules. One such molecule is the cytoplasmic tyrosine kinase ZAP-70, which associates with the TCR complex and is required for initiating the canonical biochemical signal pathways downstream of the TCR. In this article, we describe recent structure-based insights into the regulation and substrate specificity of ZAP-70, and then we review novel methods for determining the role of ZAP-70 catalytic activity-dependent and -independent signals in developing and mature T cells. Lastly, we discuss the disease states in mouse models and humans, which range from immunodeficiency to autoimmunity, that are caused by mutations in ZAP-70.


Assuntos
Suscetibilidade a Doenças , Transdução de Sinais , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Animais , Autoimunidade , Biomarcadores , Catálise , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Fosforilação , Transporte Proteico , Relação Estrutura-Atividade , Especificidade por Substrato , Linfócitos T/imunologia , Proteína-Tirosina Quinase ZAP-70/antagonistas & inibidores , Proteína-Tirosina Quinase ZAP-70/química , Proteína-Tirosina Quinase ZAP-70/genética
3.
Nat Immunol ; 24(1): 136-147, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581712

RESUMO

Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C-γ (PLCγ1) represents a critical step in T cell antigen receptor (TCR) signaling and subsequent thymocyte and T cell responses. PIP2 replenishment following its depletion in the plasma membrane (PM) is dependent on delivery of its precursor phosphatidylinositol (PI) from the endoplasmic reticulum (ER) to the PM. We show that a PI transfer protein (PITP), Nir3 (Pitpnm2), promotes PIP2 replenishment following TCR stimulation and is important for T cell development. In Nir3-/- T lineage cells, the PIP2 replenishment following TCR stimulation is slower. Nir3 deficiency attenuates calcium mobilization in double-positive (DP) thymocytes in response to weak TCR stimulation. This impaired TCR signaling leads to attenuated thymocyte development at TCRß selection and positive selection as well as diminished mature T cell fitness in Nir3-/- mice. This study highlights the importance of PIP2 replenishment mediated by PITPs at ER-PM junctions during TCR signaling.


Assuntos
Proteínas de Transferência de Fosfolipídeos , Transdução de Sinais , Camundongos , Animais , Proteínas de Transferência de Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Fosfatidilinositóis/metabolismo
4.
Nat Immunol ; 24(4): 676-689, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914891

RESUMO

Mature T cells must discriminate between brief interactions with self-peptides and prolonged binding to agonists. The kinetic proofreading model posits that certain T-cell antigen receptor signaling nodes serve as molecular timers to facilitate such discrimination. However, the physiological significance of this regulatory mechanism and the pathological consequences of disrupting it are unknown. Here we report that accelerating the normally slow phosphorylation of the linker for activation of T cells (LAT) residue Y136 by introducing an adjacent Gly135Asp alteration (LATG135D) disrupts ligand discrimination in vivo. The enhanced self-reactivity of LATG135D T cells triggers excessive thymic negative selection and promotes T-cell anergy. During Listeria infection, LATG135D T cells expand more than wild-type counterparts in response to very weak stimuli but display an imbalance between effector and memory responses. Moreover, despite their enhanced engagement of central and peripheral tolerance mechanisms, mice bearing LATG135D show features associated with autoimmunity and immunopathology. Our data reveal the importance of kinetic proofreading in balancing tolerance and immunity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Linfócitos T , Camundongos , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Receptores de Antígenos de Linfócitos T/metabolismo , Ativação Linfocitária , Fosforilação , Fosfoproteínas/genética
5.
Nat Immunol ; 24(1): 174-185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564464

RESUMO

The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T Citotóxicos/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Antígenos CD4 , Transdução de Sinais , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos CD8/metabolismo
6.
Immunity ; 56(12): 2682-2698.e9, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38091950

RESUMO

T cell responses are inhibited by acidic environments. T cell receptor (TCR)-induced protein phosphorylation is negatively regulated by dephosphorylation and/or ubiquitination, but the mechanisms underlying sensitivity to acidic environments are not fully understood. Here, we found that TCR stimulation induced a molecular complex of Cbl-b, an E3-ubiquitin ligase, with STS1, a pH-sensitive unconventional phosphatase. The induced interaction depended upon a proline motif in Cbl-b interacting with the STS1 SH3 domain. STS1 dephosphorylated Cbl-b interacting phosphoproteins. The deficiency of STS1 or Cbl-b diminished the sensitivity of T cell responses to the inhibitory effects of acid in an autocrine or paracrine manner in vitro or in vivo. Moreover, the deficiency of STS1 or Cbl-b promoted T cell proliferative and differentiation activities in vivo and inhibited tumor growth, prolonged survival, and improved T cell fitness in tumor models. Thus, a TCR-induced STS1-Cbl-b complex senses intra- or extra-cellular acidity and regulates T cell responses, presenting a potential therapeutic target for improving anti-tumor immunity.


Assuntos
Transdução de Sinais , Linfócitos T , Ubiquitina-Proteína Ligases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Concentração de Íons de Hidrogênio
7.
Nat Immunol ; 20(11): 1481-1493, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31611699

RESUMO

Self-non-self discrimination is central to T cell-mediated immunity. The kinetic proofreading model can explain T cell antigen receptor (TCR) ligand discrimination; however, the rate-limiting steps have not been identified. Here, we show that tyrosine phosphorylation of the T cell adapter protein LAT at position Y132 is a critical kinetic bottleneck for ligand discrimination. LAT phosphorylation at Y132, mediated by the kinase ZAP-70, leads to the recruitment and activation of phospholipase C-γ1 (PLC-γ1), an important effector molecule for T cell activation. The slow phosphorylation of Y132, relative to other phosphosites on LAT, is governed by a preceding glycine residue (G131) but can be accelerated by substituting this glycine with aspartate or glutamate. Acceleration of Y132 phosphorylation increases the speed and magnitude of PLC-γ1 activation and enhances T cell sensitivity to weaker stimuli, including weak agonists and self-peptides. These observations suggest that the slow phosphorylation of Y132 acts as a proofreading step to facilitate T cell ligand discrimination.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Feminino , Ligantes , Masculino , Proteínas de Membrana/imunologia , Camundongos , Fosfolipase C gama/metabolismo , Fosforilação/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/metabolismo , Tirosina/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo
8.
Nat Immunol ; 19(7): 733-741, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915297

RESUMO

T cell-antigen receptor (TCR) signaling requires the sequential activities of the kinases Lck and Zap70. Upon TCR stimulation, Lck phosphorylates the TCR, thus leading to the recruitment, phosphorylation, and activation of Zap70. Lck binds and stabilizes phosho-Zap70 by using its SH2 domain, and Zap70 phosphorylates the critical adaptors LAT and SLP76, which coordinate downstream signaling. It is unclear whether phosphorylation of these adaptors occurs through passive diffusion or active recruitment. We report the discovery of a conserved proline-rich motif in LAT that mediates efficient LAT phosphorylation. Lck associates with this motif via its SH3 domain, and with phospho-Zap70 via its SH2 domain, thereby acting as a molecular bridge that facilitates the colocalization of Zap70 and LAT. Elimination of this proline-rich motif compromises TCR signaling and T cell development. These results demonstrate the remarkable multifunctionality of Lck, wherein each of its domains has evolved to orchestrate a distinct step in TCR signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas de Membrana/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Animais , Células HEK293 , Humanos , Células Jurkat , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Prolina/análise , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/imunologia
9.
Nat Immunol ; 15(9): 798-807, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25137454

RESUMO

The initiation of T cell antigen receptor signaling is a key step that can result in T cell activation and the orchestration of an adaptive immune response. Early events in T cell receptor signaling can distinguish between agonist and endogenous ligands with exquisite selectivity, and show extraordinary sensitivity to minute numbers of agonists in a sea of endogenous ligands. We review our current knowledge of models and crucial molecules that aim to provide a mechanistic explanation for these observations. Building on current understanding and a discussion of unresolved issues, we propose a molecular model for initiation of T cell receptor signaling that may serve as a useful guide for future studies.


Assuntos
Imunidade Adaptativa/imunologia , Ativação Linfocitária/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Humanos
10.
Nat Immunol ; 15(4): 393-401, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24608041

RESUMO

The microRNA miR-210 is a signature of hypoxia. We found robust increase in the abundance of miR-210 (>100-fold) in activated T cells, especially in the TH17 lineage of helper T cells. Hypoxia acted in synergy with stimulation via the T cell antigen receptor (TCR) and coreceptor CD28 to accelerate and increase Mir210 expression. Mir210 was directly regulated by HIF-1α, a key transcriptional regulator of TH17 polarization. Unexpectedly, we identified Hif1a as a target of miR-210, which suggested negative feedback by miR-210 in inhibiting HIF-1α expression. Deletion of Mir210 promoted TH17 differentiation under conditions of limited oxygen. In experimental colitis, miR-210 reduced the abundance of Hif1a transcripts and the proportion of cells that produced inflammatory cytokines and controlled disease severity. Our study identifies miR-210 as an important regulator of T cell differentiation in hypoxia, which can limit immunopathology.


Assuntos
Colite Ulcerativa/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/metabolismo , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Animais , Antígenos CD4/metabolismo , Diferenciação Celular/genética , Hipóxia Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/genética , Interferência de RNA/imunologia , Subpopulações de Linfócitos T/citologia , Células Th17/citologia
11.
Nat Immunol ; 15(2): 186-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24317039

RESUMO

Signaling via the T cell antigen receptor (TCR) is initiated by Src-family kinases (SFKs). To understand how the kinase Csk, a negative regulator of SFKs, controls the basal state and the initiation of TCR signaling, we generated mice that express a Csk variant sensitive to an analog of the common kinase inhibitor PP1 (Csk(AS)). Inhibition of Csk(AS) in thymocytes, without engagement of the TCR, induced potent activation of SFKs and proximal TCR signaling up to phospholipase C-γ1 (PLC-γ1). Unexpectedly, increases in inositol phosphates, intracellular calcium and phosphorylation of the kinase Erk were impaired. Altering the actin cytoskeleton pharmacologically or providing costimulation via CD28 'rescued' those defects. Thus, Csk has a critical role in preventing TCR signaling. However, our studies also revealed a requirement for actin remodeling, initiated by costimulation, for full TCR signaling.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Proteínas Mutantes/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Timócitos/imunologia , Quinases da Família src/metabolismo , Animais , Antígenos CD28/imunologia , Proteína Tirosina Quinase CSK , Células Cultivadas , Citocalasina D/administração & dosagem , Citoesqueleto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mutantes/genética , Polimerização/efeitos dos fármacos , Engenharia de Proteínas , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Timócitos/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética
12.
Nat Immunol ; 15(7): 687-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908390

RESUMO

The catalytic activity of Zap70 is crucial for T cell antigen receptor (TCR) signaling, but the quantitative and temporal requirements for its function in thymocyte development are not known. Using a chemical-genetic system to selectively and reversibly inhibit Zap70 catalytic activity in a model of synchronized thymic selection, we showed that CD4(+)CD8(+) thymocytes integrate multiple, transient, Zap70-dependent signals over more than 36 h to reach a cumulative threshold for positive selection, whereas 1 h of signaling was sufficient for negative selection. Titration of Zap70 activity resulted in graded reductions in positive and negative selection but did not decrease the cumulative TCR signals integrated by positively selected OT-I cells, which revealed heterogeneity, even among CD4(+)CD8(+) thymocytes expressing identical TCRs undergoing positive selection.


Assuntos
Linfócitos T/fisiologia , Proteína-Tirosina Quinase ZAP-70/fisiologia , Animais , Cálcio/metabolismo , Catálise , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Tirosina Quinases/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais , Quinase Syk
13.
Trends Immunol ; 44(4): 248-255, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907684

RESUMO

Some of the current and former organizers of the Cold Spring Harbor Laboratory (CSHL) 'Gene Expression and Signaling in the Immune System' (GESIS) meeting offer opinions on emerging questions in immunology, discussing the strong value of this recurring scientific meeting in the field.


Assuntos
Sistema Imunitário , Transdução de Sinais , Humanos
14.
Proc Natl Acad Sci U S A ; 120(25): e2300987120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307442

RESUMO

T cell antigen receptor stimulation induces tyrosine phosphorylation of downstream signaling molecules and the phosphatidylinositol, Ras, MAPK, and PI3 kinase pathways, leading to T cell activation. Previously, we reported that the G-protein-coupled human muscarinic receptor could bypass tyrosine kinases to activate the phosphatidylinositol pathway and induce interleukin-2 production in Jurkat leukemic T cells. Here, we demonstrate that stimulating G-protein-coupled muscarinic receptors (M1 and synthetic hM3Dq) can activate primary mouse T cells if PLCß1 is coexpressed. Resting peripheral hM3Dq+PLCß1 (hM3Dq/ß1) T cells did not respond to clozapine, an hM3Dq agonist, unless they were preactivated by TCR and CD28 stimulation which increased hM3Dq and PLCß1 expression. This permitted large calcium and phosphorylated ERK responses to clozapine. Clozapine treatment induced high IFN-γ, CD69, and CD25 expression, but surprisingly did not induce substantial IL-2 in hM3Dq/ß1 T cells. Importantly, costimulation of both muscarinic receptors plus the TCR even led to reduced IL-2 expression, suggesting a selective inhibitory effect of muscarinic receptor costimulation. Stimulation of muscarinic receptors induced strong nuclear translocation of NFAT and NFκB and activated AP-1. However, stimulation of hM3Dq led to reduced IL-2 mRNA stability which correlated with an effect on the IL-2 3'UTR activity. Interestingly, stimulation of hM3Dq resulted in reduced pAKT and its downstream pathway. This may explain the inhibitory impact on IL-2 production in hM3Dq/ß1T cells. Moreover, an inhibitor of PI3K reduced IL-2 production in TCR-stimulated hM3Dq/ß1 CD4 T cells, suggesting that activating the pAKT pathway is critical for IL-2 production in T cells.


Assuntos
Clozapina , Interleucina-2 , Humanos , Animais , Camundongos , Receptores Muscarínicos , Interferon gama , Proteínas de Ligação ao GTP , Tirosina
15.
Immunol Rev ; 307(1): 145-160, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34923645

RESUMO

Establishing both central and peripheral tolerance requires the appropriate TCR signaling strength to discriminate self- from agonist-peptide bound to self MHC molecules. ZAP70, a cytoplasmic tyrosine kinase, directly interacts with the TCR complex and plays a central and requisite role in TCR signaling in both thymocytes and peripheral T cells. By studying ZAP70 hypomorphic mutations in mice and humans with a spectrum of hypoactive or hyperactive activities, we have gained insights into mechanisms of central and peripheral tolerance. Interestingly, both hypoactive and hyperactive ZAP70 can lead to the development of autoimmune diseases, albeit through distinct mechanisms. Immature thymocytes and mature T cells rely on normal ZAP70 function to complete their development in the thymus and to modulate T cell responses in the periphery. Hypoactive ZAP70 function compromises key developmental checkpoints required to establish central tolerance, allowing thymocytes with potentially self-reactive TCRs a greater chance to escape negative selection. Such 'forbidden clones' may escape into the periphery and may pose a greater risk for autoimmune disease development since they may not engage negative regulatory mechanisms as effectively. Hyperactive ZAP70 enhances thymic negative selection but some thymocytes will, nonetheless, escape negative selection and have greater sensitivity to weak and self-ligands. Such cells must be controlled by mechanisms involved in anergy, expansion of Tregs, and upregulation of inhibitory receptors or signaling molecules. However, such potentially autoreactive cells may still be able to escape control by peripheral negative regulatory constraints. Consistent with findings in Zap70 mutants, the signaling defects in at least one ZAP70 substrate, LAT, can also lead to autoimmune disease. By dissecting the similarities and differences among mouse models of patient disease or mutations in ZAP70 that affect TCR signaling strength, we have gained insights into how perturbed ZAP70 function can lead to autoimmunity. Because of our work and that of others on ZAP70, it is likely that perturbations in other molecules affecting TCR signaling strength will be identified that also overcome tolerance mechanisms and cause autoimmunity. Delineating these molecular pathways could lead to the development of much needed new therapeutic targets in these complex diseases.


Assuntos
Doenças Autoimunes , Autoimunidade , Proteínas Tirosina Quinases/metabolismo , Animais , Humanos , Tolerância Imunológica , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Timócitos , Timo
16.
Immunity ; 45(6): 1232-1244, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27889108

RESUMO

B1 and B2 B cells differ in their ability to respond to T-cell-independent (TI) antigens. Here we report that the Src-family kinase (SFK) regulator CD148 has a unique and critical role in the initiation of B1 but not B2 cell antigen receptor signaling. CD148 loss-of-function mice were found to have defective B1 B-cell-mediated antibody responses against the T-cell-independent antigens NP-ficoll and Pneumovax 23 and had impaired selection of the B1 B cell receptor (BCR) repertoire. These deficiencies were associated with a decreased ability of B1 B cells to induce BCR signaling downstream of the SFK Lyn. Notably, Lyn appeared to be selectively regulated by CD148 and loss of this SFK resulted in opposite signaling phenotypes in B1 and B2 B cells. These findings reveal that the function and regulation of Lyn during B1 cell BCR signaling is distinct from other B cell subsets.


Assuntos
Subpopulações de Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Quinases da Família src/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Camundongos , Camundongos Knockout , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/imunologia , Transdução de Sinais/imunologia
17.
Immunity ; 44(5): 973-88, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27192564

RESUMO

Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.


Assuntos
Doenças Autoimunes/imunologia , Antígenos CD28/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Imunoterapia/métodos , Linfócitos T/imunologia , Abatacepte/uso terapêutico , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/terapia , Antígenos CD28/genética , Antígenos CD28/imunologia , Homeostase , Humanos , Imunoterapia/tendências , Ativação Linfocitária , Camundongos , Terapia de Alvo Molecular , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
18.
Mol Cell ; 67(3): 498-511.e6, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28735895

RESUMO

The Src Family kinase Lck sets a critical threshold for T cell activation because it phosphorylates the TCR complex and the Zap70 kinase. How a T cell controls the abundance of active Lck molecules remains poorly understood. We have identified an unappreciated role for a phosphosite, Y192, within the Lck SH2 domain that profoundly affects the amount of active Lck in cells. Notably, mutation of Y192 blocks critical TCR-proximal signaling events and impairs thymocyte development in retrogenic mice. We determined that these defects are caused by hyperphosphorylation of the inhibitory C-terminal tail of Lck. Our findings reveal that modification of Y192 inhibits the ability of CD45 to associate with Lck in cells and dephosphorylate the C-terminal tail of Lck, which prevents its adoption of an active open conformation. These results suggest a negative feedback loop that responds to signaling events that tune active Lck amounts and TCR sensitivity.


Assuntos
Antígenos Comuns de Leucócito/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Timócitos/enzimologia , Domínios de Homologia de src , Animais , Ativação Enzimática , Genótipo , Células HEK293 , Humanos , Células Jurkat , Antígenos Comuns de Leucócito/química , Antígenos Comuns de Leucócito/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/deficiência , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Mutação , Fenótipo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Timócitos/imunologia , Fatores de Tempo , Transfecção
19.
Cell ; 136(2): 337-51, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19167334

RESUMO

Activation of Ras proteins underlies functional decisions in diverse cell types. Two molecules, RasGRP and SOS, catalyze Ras activation in lymphocytes. Binding of active Ras to SOS' allosteric pocket markedly increases SOS' activity establishing a positive feedback loop for SOS-mediated Ras activation. Integrating in silico and in vitro studies, we demonstrate that digital signaling in lymphocytes (cells are "on" or "off") is predicated upon feedback regulation of SOS. SOS' feedback loop leads to hysteresis in the dose-response curve, which can enable a capacity to sustain Ras activation as stimuli are withdrawn and exhibit "memory" of past encounters with antigen. Ras activation via RasGRP alone is analog (graded increase in amplitude with stimulus). We describe how complementary analog (RasGRP) and digital (SOS) pathways act on Ras to efficiently convert analog input to digital output. Numerous predictions regarding the impact of our findings on lymphocyte function and development are noted.


Assuntos
Linfócitos B/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Proteínas ras/metabolismo , Animais , Linfócitos B/citologia , Linhagem Celular , Galinhas , Simulação por Computador , Humanos , Células Jurkat , Ativação Linfocitária , Linfócitos T/citologia
20.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34675079

RESUMO

T cell antigen receptor (TCR) and B cell antigen receptor (BCR) signaling are initiated and tightly regulated by Src-family kinases (SFKs). SFKs positively regulate TCR signaling in naïve T cells but have both positive and negative regulatory roles in BCR signaling in naïve B cells. The proper regulation of their activities depends on the opposing actions of receptor tyrosine phosphatases CD45 and CD148 and the cytoplasmic tyrosine kinase C-terminal Src kinase Csk. Csk is a major negative regulator of SFKs. Using a PP1-analog-sensitive Csk (CskAS) system, we have previously shown that inhibition of CskAS increases SFK activity, leading to augmentation of responses to weak TCR stimuli in T cells. However, the effects of Csk inhibition in B cells were not known. In this study, we surprisingly found that inhibition of CskAS led to marked inhibition of BCR-stimulated cytoplasmic free calcium increase and Erk activation despite increased SFK activation in B cells, contrasting the effects observed in T cells. Further investigation revealed that acute CskAS inhibition suppressed BCR-mediated phosphatidylinositol 3,4,5-trisphosphate (PIP3) production in B cells. Restoring PIP3 levels in B cells by CD19 cross-linking or SHIP1 deficiency eliminated the negative regulatory effect of CskAS inhibition. This reveals the critical role of Csk in maintaining an appropriate level of SFK activity and regulating PIP3 amounts as a means of compensating for SFK fluctuations to prevent inappropriate B cell activation. This regulatory mechanism controlling PIP3 amounts may also contribute to B cell anergy and self-tolerance.


Assuntos
Linfócitos B/imunologia , Proteína Tirosina Quinase CSK/antagonistas & inibidores , Ativação Linfocitária , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA