Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(5): 1080-1096.e19, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32380006

RESUMO

Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Microbiota/imunologia , Imunidade Adaptativa/imunologia , Imunidade Adaptativa/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/imunologia
2.
Nat Immunol ; 18(4): 442-455, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28250425

RESUMO

Innate-like B-1a cells provide a first line of defense against pathogens, yet little is known about their transcriptional control. Here we identified an essential role for the transcription factor Bhlhe41, with a lesser contribution by Bhlhe40, in controlling B-1a cell differentiation. Bhlhe41-/-Bhlhe40-/- B-1a cells were present at much lower abundance than were their wild-type counterparts. Mutant B-1a cells exhibited an abnormal cell-surface phenotype and altered B cell receptor (BCR) repertoire exemplified by loss of the phosphatidylcholine-specific VH12Vκ4 BCR. Expression of a pre-rearranged VH12Vκ4 BCR failed to 'rescue' the mutant phenotype and revealed enhanced proliferation accompanied by increased cell death. Bhlhe41 directly repressed the expression of cell-cycle regulators and inhibitors of BCR signaling while enabling pro-survival cytokine signaling. Thus, Bhlhe41 controls the development, BCR repertoire and self-renewal of B-1a cells.


Assuntos
Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Autorrenovação Celular , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Subpopulações de Linfócitos B/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Biomarcadores , Diferenciação Celular/genética , Autorrenovação Celular/genética , Regulação da Expressão Gênica , Genes de Imunoglobulinas , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Fenótipo , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/metabolismo , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 121(11): e2312874121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451943

RESUMO

The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.


Assuntos
Proteômica , Pseudomonas aeruginosa , Virulência/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon , Bactérias/metabolismo
4.
Immunity ; 42(2): 332-343, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692705

RESUMO

Dysfunction in Ataxia-telangiectasia mutated (ATM), a central component of the DNA repair machinery, results in Ataxia Telangiectasia (AT), a cancer-prone disease with a variety of inflammatory manifestations. By analyzing AT patient samples and Atm(-/-) mice, we found that unrepaired DNA lesions induce type I interferons (IFNs), resulting in enhanced anti-viral and anti-bacterial responses in Atm(-/-) mice. Priming of the type I interferon system by DNA damage involved release of DNA into the cytoplasm where it activated the cytosolic DNA sensing STING-mediated pathway, which in turn enhanced responses to innate stimuli by activating the expression of Toll-like receptors, RIG-I-like receptors, cytoplasmic DNA sensors, and their downstream signaling partners. This study provides a potential explanation for the inflammatory phenotype of AT patients and establishes damaged DNA as a cell intrinsic danger signal that primes the innate immune system for a rapid and amplified response to microbial and environmental threats.


Assuntos
Ataxia Telangiectasia/imunologia , Dano ao DNA , DNA/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Proteínas de Membrana/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Células da Medula Óssea/imunologia , Linhagem Celular , Citosol/imunologia , Citosol/microbiologia , Reparo do DNA/genética , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Imunidade Inata , Interferon-alfa/biossíntese , Interferon beta/biossíntese , Interferon gama/biossíntese , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
PLoS Pathog ; 16(12): e1009126, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33351859

RESUMO

Embedded in an extracellular matrix, biofilm-residing bacteria are protected from diverse physicochemical insults. In accordance, in the human host the general recalcitrance of biofilm-grown bacteria hinders successful eradication of chronic, biofilm-associated infections. In this study, we demonstrate that upon addition of promethazine, an FDA approved drug, antibiotic tolerance of in vitro biofilm-grown bacteria can be abolished. We show that following the addition of promethazine, diverse antibiotics are capable of efficiently killing biofilm-residing cells at minimal inhibitory concentrations. Synergistic effects could also be observed in a murine in vivo model system. PMZ was shown to increase membrane potential and interfere with bacterial respiration. Of note, antibiotic killing activity was elevated when PMZ was added to cells grown under environmental conditions that induce low intracellular proton levels. Our results imply that biofilm-grown bacteria avoid antibiotic killing and become tolerant by counteracting intracellular alkalization through the adaptation of metabolic and transport functions. Abrogation of antibiotic tolerance by interfering with the cell's bioenergetics promises to pave the way for successful eradication of biofilm-associated infections. Repurposing promethazine as a biofilm-sensitizing drug has the potential to accelerate the introduction of new treatments for recalcitrant, biofilm-associated infections into the clinic.


Assuntos
Biofilmes/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Prometazina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Animais , Tolerância a Medicamentos/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Pseudomonas
6.
PLoS Biol ; 17(3): e2006716, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856173

RESUMO

The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1-deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte-associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function.


Assuntos
MicroRNAs/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Citometria de Fluxo , Camundongos , Camundongos Knockout , MicroRNAs/genética , Microscopia Confocal , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Timócitos/metabolismo
7.
Immunity ; 37(1): 171-86, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22749822

RESUMO

Mononuclear phagocytes are an important component of an innate immune system perceived as a system ready to react upon encounter of pathogens. Here, we show that in response to microbial stimulation, mononuclear phagocytes residing in nonmucosal lymphoid organs of germ-free mice failed to induce expression of a set of inflammatory response genes, including those encoding the various type I interferons (IFN-I). Consequently, NK cell priming and antiviral immunity were severely compromised. Whereas pattern recognition receptor signaling and nuclear translocation of the transcription factors NF-κB and IRF3 were normal in mononuclear phagocytes of germ-free mice, binding to their respective cytokine promoters was impaired, which correlated with the absence of activating histone marks. Our data reveal a previously unrecognized role for postnatally colonizing microbiota in the introduction of chromatin level changes in the mononuclear phagocyte system, thereby poising expression of central inflammatory genes to initiate a powerful systemic immune response during viral infection.


Assuntos
Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Metagenoma/imunologia , Fagócitos/imunologia , Animais , Citocinas/biossíntese , Interferon Tipo I/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Viroses/imunologia
8.
Immunity ; 37(1): 48-59, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22770884

RESUMO

γδ T cells are an important innate source of interleukin-17 (IL-17). In contrast to T helper 17 (Th17) cell differentiation, which occurs in the periphery, IL-17-producing γδ T cells (γδT17 cells) are probably committed during thymic development. To study when γδT17 cells arise during ontogeny, we used TcrdH2BeGFP reporter mice to monitor T cell receptor (TCR) rearrangement and IL-17 production in the embryonic thymus. We observed that several populations such as innate lymphoid cells and early T cell precursors were able to produce IL-17 prior to (and thus independent of) TCR recombination. γδT17 cells were absent after transplantation of IL-17-sufficient bone marrow into mice lacking both Il17a and Il17f. Also, γδT17 cells were not generated after genetic restoration of defective Rag1 function in adult mice. Together, these data suggested that these cells developed exclusively before birth and subsequently persisted in adult mice as self-renewing, long-lived cells.


Assuntos
Interleucina-17/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Medula Óssea/metabolismo , Quimerismo , Homeostase/imunologia , Imunidade Inata , Interleucina-17/deficiência , Interleucina-17/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores CCR6/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo , Timo/embriologia , Timo/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
9.
Int J Cancer ; 147(2): 448-460, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31755108

RESUMO

Genetically engineered Salmonella Typhimurium are potent vectors for prophylactic and therapeutic measures against pathogens as well as cancer. This is based on the potent adjuvanticity that supports strong immune responses. The physiology of Salmonella is well understood. It simplifies engineering of both enhanced immune-stimulatory properties as well as safety features, thus, resulting in an appropriate balance between attenuation and efficacy for clinical applications. A major virulence factor of Salmonella is the flagellum. It is also a strong pathogen-associated molecular pattern recognized by extracellular and intracellular receptors of immune cells of the host. At the same time, it represents a serious metabolic burden. Accordingly, the bacteria evolved tight regulatory mechanisms that control flagella synthesis in vivo. Here, we systematically investigated the immunogenicity and adjuvant properties of various flagella mutants of Salmonella in vitro and in a mouse cancer model in vivo. We found that mutants lacking the flagellum-specific ATPase FliHIJ or the inner membrane ring FliF displayed the greatest stimulatory capacity and strongest antitumor effects, while remaining safe in vivo. Scanning electron microscopy revealed the presence of outer membrane vesicles in the ΔfliF and ΔfliHIJ mutants. Finally, the combination of the ΔfliF and ΔfliHIJ mutations with our previously described attenuated and immunogenic background strain SF102 displayed strong efficacy against the highly resistant cancer cell line RenCa. We thus conclude that manipulating flagella biosynthesis has great potential for the construction of highly efficacious and versatile Salmonella vector strains.


Assuntos
Neoplasias do Colo/terapia , Flagelos/imunologia , Mutação , Salmonella typhimurium/imunologia , Administração Intravenosa , Animais , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Modelos Animais de Doenças , Flagelos/genética , Proteínas de Membrana/genética , Camundongos , Microscopia Eletrônica de Varredura , ATPases Translocadoras de Prótons/genética , Células RAW 264.7 , Salmonella typhimurium/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Eur J Immunol ; 49(3): 443-453, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30427069

RESUMO

Natural killer T (NKT) cells recognize glycolipids presented on CD1d. They share features of adaptive T lymphocytes and innate NK cells, and mediate immunoregulatory functions via rapid production of cytokines. Invariant (iNKT) and diverse (dNKT) NKT cell subsets are defined by their TCR. The immunological role of dNKT cells, that do not express the invariant TCRα-chain used by iNKT cells, is less well explored than that of iNKT cells. Here, we investigated signals driving Toll-like receptor (TLR) ligand activation of TCR-transgenic murine dNKT cells. IFN-γ production by dNKT cells required dendritic cells (DC), cell-to-cell contact and presence of TLR ligands. TLR-stimulated DC activated dNKT cells to secrete IFN-γ in a CD1d-, CD80/86- and type I IFN-independent manner. In contrast, a requirement for IL-12p40, and a TLR ligand-selective dependence on IL-18 or IL-15 was observed. TLR ligand/DC stimulation provoked early secretion of pro-inflammatory cytokines by both CD62L+ and CD62L- dNKT cells. However, proliferation was limited. In contrast, TCR/co-receptor-mediated activation resulted in proliferation and delayed production of a broader cytokine spectrum preferentially in CD62L- dNKT cells. Thus, innate (TLR ligand/DC) and adaptive (TCR/co-receptor) stimulation of dNKT cells resulted in distinct cellular responses that may contribute differently to the formation of immune memory.


Assuntos
Imunidade Adaptativa/imunologia , Citocinas/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Proliferação de Células/genética , Células Cultivadas , Citocinas/metabolismo , Imunidade Celular/imunologia , Ligantes , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células T Matadoras Naturais/metabolismo , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
11.
Eur J Immunol ; 49(1): 121-132, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281154

RESUMO

The interdependence of posttranscriptional gene regulation via miRNA and transcriptional regulatory networks in lymphocyte development is poorly understood. Here, we identified miR-191 as direct upstream modulator of a transcriptional module comprising the transcription factors Foxp1, E2A, and Egr1. Deletion as well as ectopic expression of miR-191 resulted in developmental arrest in B lineage cells, indicating that fine tuning of the combined expression levels of Foxp1, E2A, and Egr1, which in turn control somatic recombination and cytokine-driven expansion, constitutes a prerequisite for efficient B-cell development. In conclusion, we propose that miR-191 acts as a rheostat in B-cell development by fine tuning a key transcriptional program.


Assuntos
Linfócitos B/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/genética , Proteínas Repressoras/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Fatores de Transcrição Forkhead/genética , Redes Reguladoras de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Recombinação Genética , Proteínas Repressoras/genética , Transcrição Gênica , Transgenes/genética
12.
Environ Microbiol ; 21(3): 883-897, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30411474

RESUMO

Pseudomonas aeruginosa is an environmental microorganism and a causative agent of diverse acute and chronic, biofilm-associated infections. Advancing research-based knowledge on its adaptation to conditions within the human host is bound to reveal novel strategies and targets for therapeutic intervention. Here, we investigated the traits that P. aeruginosa PA14 as well as a virulence attenuated ΔlasR mutant need to survive in selected murine infection models. Experimentally, the genetic programs that the bacteria use to adapt to biofilm-associated versus acute infections were dissected by passaging transposon mutant libraries through mouse lungs (acute) or mouse tumours (biofilm-infection). Adaptive metabolic changes of P. aeruginosa were generally required during both infection processes. Counter-selection against flagella expression was observed during acute lung infections. Obviously, avoidance of flagella-mediated activation of host immunity is advantageous for the wildtype bacteria. For the ΔlasR mutant, loss of flagella did not confer a selective advantage. Apparently, other pathogenesis mechanisms are active in this virulence attenuated strain. In contrast, the infective process of P. aeruginosa in the chronic biofilm model apparently required expression of flagellin. Together, our findings imply that the host immune reactions against the infectious agent are very decisive for acuteness and duration of the infectious disease. They direct disease outcome.


Assuntos
Flagelos/fisiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Animais , Biofilmes , Doença Crônica , Flagelos/genética , Camundongos , Camundongos Endogâmicos BALB C , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Infecções Respiratórias/microbiologia , Virulência
13.
J Immunol ; 198(4): 1595-1605, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077601

RESUMO

Among innovative adjuvants conferring a Th1-shift, RNAdjuvant is a promising candidate. This adjuvant consists of a 547-nt uncapped noncoding ssRNA containing polyU repeats that is stabilized by a cationic carrier peptide. Whereas vaccination of mice with an influenza subunit vaccine induced moderate virus-specific IgG1, vaccination together with RNAdjuvant significantly enhanced this IgG1 and additionally promoted the formation of IgG2b/c, which is indicative of Th1 responses. Furthermore, such sera neutralized influenza virus, whereas this effect was not detected upon vaccination with the subunit vaccine alone. Similarly, upon vaccination with virus-like particles displaying vesicular stomatitis virus G protein, RNAdjuvant promoted the formation of virus-specific IgG2b/c and enhanced neutralizing IgG responses to an extent that mice were protected against lethal virus infection. RNAdjuvant induced dendritic cells to upregulate activation markers and produce IFN-I. Although these effects were strictly TLR7 dependent, RNAdjuvant-mediated augmentation of vaccine responses needed concurrent TLR and RIG-I-like helicase signaling. This was indicated by the absence of the adjuvant effect in vaccinated MyD88-/-Cardif-/- mice, which are devoid of TLR (with the exception of TLR3) and RIG-I-like helicase signaling, whereas in vaccinated MyD88-/- mice the adjuvant effect was reduced. Notably, i.m. RNAdjuvant injection induced local IFN-I responses and did not induce systemic effects, implying good tolerability and a favorable safety profile for RNAdjuvant.


Assuntos
Adjuvantes Imunológicos , Imunoglobulina G/sangue , Vacinas contra Influenza/imunologia , Glicoproteínas de Membrana/imunologia , RNA não Traduzido/imunologia , Receptor 7 Toll-Like/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Adjuvantes Imunológicos/efeitos adversos , Animais , Anticorpos Antivirais/sangue , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Imunoglobulina G/imunologia , Vacinas contra Influenza/administração & dosagem , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/metabolismo , Células Th1/imunologia , Receptor 7 Toll-Like/metabolismo , Vacinação , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/imunologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-30297365

RESUMO

Biofilm-residing bacteria embedded in an extracellular matrix are protected from diverse physicochemical insults. In addition to the general recalcitrance of biofilm bacteria, high bacterial loads in biofilm-associated infections significantly diminish the efficacy of antimicrobials due to a low per-cell antibiotic concentration. Accordingly, present antimicrobial treatment protocols that have been established to serve the eradication of acute infections fail to clear biofilm-associated chronic infections. In the present study, we applied automated confocal microscopy on Pseudomonas aeruginosa to monitor dynamic killing of biofilm-grown bacteria by tobramycin and colistin in real time. We revealed that the time required for surviving bacteria to repopulate the biofilm could be taken as a measure for effectiveness of the antimicrobial treatment. It depends on the (i) nature and concentration of the antibiotic, (ii) duration of antibiotic treatment, (iii) application as monotherapy or combination therapy, and (iv) interval of drug administration. The vicious cycle of killing and repopulation of biofilm bacteria could also be broken in an in vivo model system by applying successive antibiotic dosages at intervals that do not allow full reconstitution of the biofilm communities. Treatment regimens that consider the important aspects of antimicrobial killing kinetics bear the potential to improve control of biofilm regrowth. This is an important and underestimated factor that is bound to ensure sustainable treatment success of chronic infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Colistina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Animais , Antibacterianos/sangue , Antibacterianos/farmacocinética , Biofilmes/crescimento & desenvolvimento , Colistina/sangue , Colistina/farmacocinética , Neoplasias do Colo/complicações , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Quimioterapia Combinada/métodos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Tobramicina/sangue , Tobramicina/farmacocinética , Resultado do Tratamento
15.
J Immunol ; 196(6): 2860-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26880763

RESUMO

The crucial role that endogenously produced IFN-ß plays in eliciting an immune response against cancer has recently started to be elucidated. Endogenous IFN-ß has an important role in immune surveillance and control of tumor development. Accordingly, the role of TLR agonists as cancer therapeutic agents is being revisited via the strategy of intra/peritumoral injection with the idea of stimulating the production of endogenous type I IFN inside the tumor. Polyadenylic-polyuridylic acid (poly A:U) is a dsRNA mimetic explored empirically in cancer immunotherapy a long time ago with little knowledge regarding its mechanisms of action. In this work, we have in vivo visualized the IFN-ß required for the antitumor immune response elicited in a therapeutic model of poly A:U administration. In this study, we have identified the role of host type I IFNs, cell populations that are sources of IFN-ß in the tumor microenvironment, and other host requirements for tumor control in this model. One single peritumoral dose of poly A:U was sufficient to induce IFN-ß, readily visualized in vivo. IFN-ß production relied mainly on the activation of the transcription factor IFN regulatory factor 3 and the molecule UNC93B1, indicating that TLR3 is required for recognizing poly A:U. CD11c(+) cells were an important, but not the only source of IFN-ß. Host type I IFN signaling was absolutely required for the reduced tumor growth, prolonged mice survival, and the strong antitumor-specific immune response elicited upon poly A:U administration. These findings add new perspectives to the use of IFN-ß-inducing compounds in tumor therapy.


Assuntos
Imunoterapia/métodos , Interferon beta/metabolismo , Poli A-U/administração & dosagem , Animais , Antígeno CD11c/metabolismo , Carcinogênese , Humanos , Vigilância Imunológica , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/imunologia , Melanoma Experimental , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Modelos Animais , Transplante de Neoplasias , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo
16.
J Virol ; 90(9): 4298-4307, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26889029

RESUMO

UNLABELLED: Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivity in vitro Recently, we reported that inactivation of a single HA-activating protease gene,Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection of Tmprss2 knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast,Tmprss2(-/-)Tmprss4(-/-)double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virus in vivo IMPORTANCE: Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously that Tmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes,Tmprss2 and Tmprss4, strongly reduced viral spread as well as lung pathology and resulted in increased survival after H3N2 virus infection. Thus, TMPRSS4 represents another host cell factor that is involved in cleavage activation of H3N2 influenza viruses in vivo.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H3N2/fisiologia , Proteínas de Membrana/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Serina Endopeptidases/metabolismo , Animais , Brônquios/metabolismo , Brônquios/virologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ativação Enzimática , Feminino , Deleção de Genes , Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Proteólise , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/virologia , Serina Endopeptidases/genética , Carga Viral , Replicação Viral
17.
Nature ; 479(7374): 547-51, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22080947

RESUMO

Upon the aberrant activation of oncogenes, normal cells can enter the cellular senescence program, a state of stable cell-cycle arrest, which represents an important barrier against tumour development in vivo. Senescent cells communicate with their environment by secreting various cytokines and growth factors, and it was reported that this 'secretory phenotype' can have pro- as well as anti-tumorigenic effects. Here we show that oncogene-induced senescence occurs in otherwise normal murine hepatocytes in vivo. Pre-malignant senescent hepatocytes secrete chemo- and cytokines and are subject to immune-mediated clearance (designated as 'senescence surveillance'), which depends on an intact CD4(+) T-cell-mediated adaptive immune response. Impaired immune surveillance of pre-malignant senescent hepatocytes results in the development of murine hepatocellular carcinomas (HCCs), thus showing that senescence surveillance is important for tumour suppression in vivo. In accordance with these observations, ras-specific Th1 lymphocytes could be detected in mice, in which oncogene-induced senescence had been triggered by hepatic expression of Nras(G12V). We also found that CD4(+) T cells require monocytes/macrophages to execute the clearance of senescent hepatocytes. Our study indicates that senescence surveillance represents an important extrinsic component of the senescence anti-tumour barrier, and illustrates how the cellular senescence program is involved in tumour immune surveillance by mounting specific immune responses against antigens expressed in pre-malignant senescent cells.


Assuntos
Senescência Celular/imunologia , Hepatócitos/imunologia , Vigilância Imunológica/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/patologia , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/prevenção & controle , Senescência Celular/genética , Progressão da Doença , Genes ras/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/citologia , Fígado/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/prevenção & controle , Camundongos , Camundongos SCID , Fagocitose , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/prevenção & controle
18.
Mol Ther ; 24(11): 2012-2020, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27506450

RESUMO

Given their high potential to evoke cytolytic T cell responses, tumor antigen-encoding messenger RNA (mRNA) vaccines are now being intensively explored as therapeutic cancer vaccines. mRNA vaccines clearly benefit from wrapping the mRNA into nano-sized carriers such as lipoplexes that protect the mRNA from degradation and increase its uptake by dendritic cells in vivo. Nevertheless, the early innate host factors that regulate the induction of cytolytic T cells to mRNA lipoplex vaccines have remained unresolved. Here, we demonstrate that mRNA lipoplexes induce a potent type I interferon (IFN) response upon subcutaneous, intradermal and intranodal injection. Regardless of the route of immunization applied, these type I IFNs interfered with the generation of potent cytolytic T cell responses. Most importantly, blocking type I IFN signaling at the site of immunization through the use of an IFNAR blocking antibody greatly enhanced the prophylactic and therapeutic antitumor efficacy of mRNA lipoplexes in the highly aggressive B16 melanoma model. As type I IFN induction appears to be inherent to the mRNA itself rather than to unique properties of the mRNA lipoplex formulation, preventing type I IFN induction and/or IFNAR signaling at the site of immunization might constitute a widely applicable strategy to improve the potency of mRNA vaccination.


Assuntos
Vacinas Anticâncer/administração & dosagem , Interferon Tipo I/metabolismo , Melanoma Experimental/tratamento farmacológico , RNA Mensageiro/administração & dosagem , Linfócitos T Citotóxicos/metabolismo , Animais , Anticorpos/administração & dosagem , Vacinas Anticâncer/imunologia , Humanos , Injeções Intradérmicas , Injeções Subcutâneas , Lipossomos , Melanoma Experimental/imunologia , Camundongos , RNA Mensageiro/imunologia , Receptor de Interferon alfa e beta/antagonistas & inibidores , Resultado do Tratamento
19.
Infect Immun ; 84(1): 162-71, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26502908

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Flagelina/imunologia , Evasão da Resposta Imune/imunologia , Metaloendopeptidases/metabolismo , Pseudomonas aeruginosa/imunologia , Células Epiteliais/imunologia , Flagelos/imunologia , Flagelina/metabolismo , Humanos , Interleucina-8/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Serina Endopeptidases/metabolismo , Fatores de Virulência
20.
Int J Cancer ; 139(6): 1350-7, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27116225

RESUMO

The importance of endogenous Type I IFNs in cancer immune surveillance is well established by now. Their role in polarization of tumor-associated neutrophilic granulocytes into anti-tumor effector cells has been recently demonstrated. Yet, the cellular source of Type I IFNs as well as the mode of induction is not clearly defined. Here, we demonstrate that IFN-ß is induced by growing murine tumors. Induction is mainly mediated via STING-dependent signaling pathways, suggesting tumor derived DNA as trigger. Transcription factors IRF3 and IRF5 were activated under these conditions which is consistent with tumor infiltrating dendritic cells (DCs) being the major cellular source of IFN-ß at the tumor site. Besides DCs, tumor cells themselves are induced to contribute to the production of IFN-ß. Taken together, our data provide further information on immune surveillance by Type I IFNs and suggest novel potent cellular targets for future cancer therapy.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Expressão Gênica , Genes Reporter , Vigilância Imunológica , Interferon Tipo I/genética , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA