Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 614(7949): 732-741, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792830

RESUMO

Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons1-5. Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.


Assuntos
Encéfalo , Reparo do DNA , Complexos Multiproteicos , Neurônios , Sinapses , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo/metabolismo , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica , Lisina Acetiltransferase 5/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Mutação , Longevidade/genética , Genoma , Envelhecimento/genética , Doenças Neurodegenerativas
2.
Mol Cell ; 67(5): 770-782.e6, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886335

RESUMO

The mammalian circadian clock is built on a feedback loop in which PER and CRY proteins repress their own transcription. We found that in mouse liver nuclei all three PERs, both CRYs, and Casein Kinase-1δ (CK1δ) are present together in an ∼1.9-MDa repressor assembly that quantitatively incorporates its CLOCK-BMAL1 transcription factor target. Prior to incorporation, CLOCK-BMAL1 exists in an ∼750-kDa complex. Single-particle electron microscopy (EM) revealed nuclear PER complexes purified from mouse liver to be quasi-spherical ∼40-nm structures. In the cytoplasm, PERs, CRYs, and CK1δ were distributed into several complexes of ∼0.9-1.1 MDa that appear to constitute an assembly pathway regulated by GAPVD1, a cytoplasmic trafficking factor. Single-particle EM of two purified cytoplasmic PER complexes revealed ∼20-nm and ∼25-nm structures, respectively, characterized by flexibly tethered globular domains. Our results define the macromolecular assemblies comprising the circadian feedback loop and provide an initial structural view of endogenous eukaryotic clock machinery.


Assuntos
Núcleo Celular/metabolismo , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Caseína Quinase Idelta/metabolismo , Linhagem Celular , Núcleo Celular/ultraestrutura , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/deficiência , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Feminino , Genótipo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Complexos Multiproteicos , Tamanho da Partícula , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fenótipo , Interferência de RNA , Transdução de Sinais , Imagem Individual de Molécula , Fatores de Tempo , Transfecção
3.
Mol Cell ; 56(6): 738-48, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25453762

RESUMO

Mammalian circadian rhythms are generated by a negative feedback loop in which PERIOD (PER) proteins accumulate, form a large nuclear complex (PER complex), and bind the transcription factor CLOCK-BMAL1, repressing their own expression. We found that mouse PER complexes include the Mi-2/nucleosome remodelling and deacetylase (NuRD) transcriptional corepressor. Unexpectedly, two NuRD subunits, CHD4 and MTA2, constitutively associate with CLOCK-BMAL1, with CHD4 functioning to promote CLOCK-BMAL1 transcriptional activity. At the onset of negative feedback, the PER complex delivers the remaining complementary NuRD subunits to DNA-bound CLOCK-BMAL1, thereby reconstituting a NuRD corepressor that is important for circadian transcriptional feedback and clock function. The PER complex thus acquires full repressor activity only upon successful targeting of CLOCK-BMAL1. Our results show how specificity is generated in the clock despite its dependence on generic transcriptional regulators and reveal the existence of active communication between the positive and negative limbs of the circadian feedback loop.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/fisiologia , Animais , Relógios Circadianos , Retroalimentação Fisiológica , Fígado/metabolismo , Camundongos Knockout , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/fisiologia
4.
Proc Natl Acad Sci U S A ; 110(40): 16021-6, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043798

RESUMO

Circadian clocks in mammals are built on a negative feedback loop in which the heterodimeric transcription factor circadian locomotor output cycles kaput (CLOCK)-brain, muscle Arnt-like 1 (BMAL1) drives the expression of its own inhibitors, the PERIOD and CRYPTOCHROME proteins. Reactivation of CLOCK-BMAL1 occurs at a specific time several hours after PERIOD and CRYPTOCHROME protein turnover, but the mechanism underlying this process is unknown. We found that mouse BMAL1 complexes include TRAP150 (thyroid hormone receptor-associated protein-150; also known as THRAP3). TRAP150 is a selective coactivator for CLOCK-BMAL1, which oscillates under CLOCK-BMAL1 transcriptional control. TRAP150 promotes CLOCK-BMAL1 binding to target genes and links CLOCK-BMAL1 to the transcriptional machinery at target-gene promoters. Depletion of TRAP150 caused low-amplitude, long-period rhythms, identifying it as a positive clock element. The activity of TRAP150 defines a positive feedback loop within the clock and provides a potential mechanism for timing the reactivation of circadian transcription.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Humanos , Immunoblotting , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , Fatores de Transcrição/genética
5.
Nat Cell Biol ; 9(3): 268-75, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17310242

RESUMO

At the core of the mammalian circadian clock is a feedback loop in which the heterodimeric transcription factor CLOCK-Brain, Muscle Arnt-like-1 (BMAL1) drives expression of its negative regulators, periods (PERs) and cryptochromes (CRYs). Here, we provide evidence that CLOCK-Interacting Protein, Circadian (CIPC) is an additional negative-feedback regulator of the circadian clock. CIPC exhibits circadian regulation in multiple tissues, and it is a potent and specific inhibitor of CLOCK-BMAL1 activity that functions independently of CRYs. CIPC-CLOCK protein complexes are present in vivo, and depletion of endogenous CIPC shortens the circadian period length. CIPC is unrelated to known proteins and has no recognizable homologues outside vertebrates. Our results suggest that negative feedback in the mammalian circadian clock is divided into distinct pathways, and that the addition of new genes has contributed to the complexity of vertebrate clocks.


Assuntos
Relógios Biológicos/fisiologia , Proteínas de Transporte/metabolismo , Ritmo Circadiano/fisiologia , Transativadores/metabolismo , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas CLOCK , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/química , Núcleo Celular/metabolismo , Criptocromos , Flavoproteínas/genética , Flavoproteínas/metabolismo , Regulação da Expressão Gênica , Imunoprecipitação , Rim/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Miocárdio/metabolismo , Células NIH 3T3 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Circadianas Period , Ligação Proteica , RNA Antissenso/genética , Transativadores/genética , Ativação Transcricional/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido
6.
Proc Natl Acad Sci U S A ; 106(16): 6808-13, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19366674

RESUMO

When food availability is restricted to a particular time each day, mammals exhibit food-anticipatory activity (FAA), a daily increase in locomotor activity preceding the presentation of food. Considerable historical evidence suggests that FAA is driven by a food-entrainable circadian clock distinct from the master clock of the suprachiasmatic nucleus. Multiple food-entrainable circadian clocks have been discovered in the brain and periphery, raising strong expectations that one or more underlie FAA. We report here that mutant mice lacking known circadian clock function in all tissues exhibit normal FAA both in a light-dark cycle and in constant darkness, regardless of whether the mutation disables the positive or negative limb of the clock feedback mechanism. FAA is thus independent of the known circadian clock. Our results indicate either that FAA is not the output of an oscillator or that it is the output of a circadian oscillator different from known circadian clocks.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Fatores de Transcrição ARNTL , Ciclos de Atividade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Escuridão , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mutação/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo
7.
Nat Commun ; 13(1): 2380, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501346

RESUMO

Thyroid hormones are essential regulators of metabolism, development, and growth. They are formed from pairs of iodinated tyrosine residues within the precursor thyroglobulin (TG), a 660-kDa homodimer of the thyroid gland, by an oxidative coupling reaction. Tyrosine pairs that give rise to thyroid hormones have been assigned within the structure of human TG, but the process of hormone formation is poorly understood. Here we report a ~3.3-Å cryo-EM structure of native bovine TG with nascent thyroid hormone formed at one of the predicted hormonogenic sites. Local structural rearrangements provide insight into mechanisms underlying thyroid hormone formation and stabilization.


Assuntos
Tireoglobulina , Hormônios Tireóideos , Animais , Bovinos , Microscopia Crioeletrônica , Humanos , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Tirosina/metabolismo
8.
Proc Natl Acad Sci U S A ; 105(39): 15172-7, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18779586

RESUMO

Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting-feeding cycle.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Ritmo Circadiano/fisiologia , Glucose/metabolismo , Fígado/fisiologia , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Homeostase/genética , Fígado/metabolismo , Camundongos , Camundongos Mutantes
9.
Neuron ; 52(2): 255-69, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17046689

RESUMO

Mutations or duplications in MECP2 cause Rett and Rett-like syndromes, neurodevelopmental disorders characterized by mental retardation, motor dysfunction, and autistic behaviors. MeCP2 is expressed in many mammalian tissues and functions as a global repressor of transcription; however, the molecular mechanisms by which MeCP2 dysfunction leads to the neural-specific phenotypes of RTT remain poorly understood. Here, we show that neuronal activity and subsequent calcium influx trigger the de novo phosphorylation of MeCP2 at serine 421 (S421) by a CaMKII-dependent mechanism. MeCP2 S421 phosphorylation is induced selectively in the brain in response to physiological stimuli. Significantly, we find that S421 phosphorylation controls the ability of MeCP2 to regulate dendritic patterning, spine morphogenesis, and the activity-dependent induction of Bdnf transcription. These findings suggest that, by triggering MeCP2 phosphorylation, neuronal activity regulates a program of gene expression that mediates nervous system maturation and that disruption of this process in individuals with mutations in MeCP2 may underlie the neural-specific pathology of RTT.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Espinhas Dendríticas/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Encéfalo/citologia , Fator Neurotrófico Derivado do Encéfalo/genética , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Plasticidade Neuronal/fisiologia , Técnicas de Cultura de Órgãos , Especificidade de Órgãos/fisiologia , Fosforilação , Ratos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatologia , Serina/metabolismo , Transmissão Sináptica/fisiologia
10.
Nat Neurosci ; 9(2): 212-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16429135

RESUMO

The suprachiasmatic nucleus (SCN) drives circadian rhythms of locomotor behavior by releasing factors that act on receptor sites near the third ventricle. Here we show that cardiotrophin-like cytokine (CLC) satisfies multiple criteria for a circadian regulator of locomotor activity. In the mouse, CLC is expressed in a subpopulation of SCN vasopressin neurons with a circadian rhythm that peaks during the daily period of locomotor quiescence. CLC receptors flank the third ventricle, and acute infusion of CLC into the third ventricle produced a transient blockade of locomotor activity without affecting the circadian clock. The hypothalamic infusion of neutralizing antibodies to the CLC receptor produced extra daily locomotor activity at the time when CLC is maximally expressed. These results suggest that CLC is probably an SCN output signal important for shaping daily rhythms of behavior; moreover, they indicate an unexpected role for a cytokine in adult brain function.


Assuntos
Ritmo Circadiano/fisiologia , Citocinas/metabolismo , Atividade Motora/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Cricetinae , Imunofluorescência , Hibridização In Situ , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
11.
Mol Biol Cell ; 26(22): 3940-5, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26269583

RESUMO

Tracking molecular dynamics in single cells in vivo is instrumental to understanding how cells act and interact in tissues. Current tissue imaging approaches focus on short-term observation and typically nonendogenous or implanted samples. Here we develop an experimental and computational setup that allows for single-cell tracking of a transcriptional reporter over a period of >1 wk in the context of an intact tissue. We focus on the peripheral circadian clock as a model system and measure the circadian signaling of hundreds of cells from two tissues. The circadian clock is an autonomous oscillator whose behavior is well described in isolated cells, but in situ analysis of circadian signaling in single cells of peripheral tissues is as-yet uncharacterized. Our approach allowed us to investigate the oscillatory properties of individual clocks, determine how these properties are maintained among different cells, and assess how they compare to the population rhythm. These experiments, using a wide-field microscope, a previously generated reporter mouse, and custom software to track cells over days, suggest how many signaling pathways might be quantitatively characterized in explant models.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas Circadianas Period/metabolismo , Análise de Célula Única/métodos , Animais , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Relógios Circadianos , Camundongos , Camundongos Transgênicos , Modelos Animais , Proteínas Nucleares/metabolismo , Células Vegetais/fisiologia , Software , Tendões/citologia , Tendões/fisiologia , Fatores de Transcrição/metabolismo
12.
Nat Struct Mol Biol ; 22(10): 759-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26323038

RESUMO

Circadian rhythms in mammals are driven by a feedback loop in which the transcription factor Clock-Bmal1 activates expression of Per and Cry proteins, which together form a large nuclear complex (Per complex) that represses Clock-Bmal1 activity. We found that mouse Clock-Bmal1 recruits the Ddb1-Cullin-4 ubiquitin ligase to Per (Per1 and Per2), Cry (Cry1 and Cry2) and other circadian target genes. Histone H2B monoubiquitination at Per genes was rhythmic and depended on Bmal1, Ddb1 and Cullin-4a. Depletion of Ddb1-Cullin-4a or an independent decrease in H2B monoubiquitination caused defective circadian feedback and decreased the association of the Per complex with DNA-bound Clock-Bmal1. Clock-Bmal1 thus covalently marks Per genes for subsequent recruitment of the Per complex. Our results reveal a chromatin-mediated signal from the positive to the negative limb of the clock that provides a licensing mechanism for circadian feedback.


Assuntos
Ritmo Circadiano/fisiologia , Retroalimentação Fisiológica/fisiologia , Histonas/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Imunoprecipitação da Cromatina , Cromatografia Líquida , Ritmo Circadiano/genética , Proteínas Culina/metabolismo , Primers do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Ubiquitinação
13.
Methods Enzymol ; 551: 197-210, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25662458

RESUMO

In mammals, circadian rhythms are generated at least in part by a cell-autonomous transcriptional feedback loop in which the three PERIOD (PER) and two CRYPTOCHROME (CRY) proteins inhibit the activity of the dimeric transcription factor CLOCK-BMAL1, thereby repressing their own expression. Upon nuclear entry, the PER and CRY proteins form a large protein complex (PER complex) that carries out circadian negative feedback by means of at least two basic functions: (1) it brings together multiple effector proteins that repress transcription and (2) it delivers these repressive effectors directly to CLOCK-BMAL1 bound to E-box sequences of circadian target genes. At present, the composition, mechanisms of action, and dynamics of PER complexes in circadian clock negative feedback are incompletely understood. Here, we describe several experimental approaches to the study of PER complexes obtained from mammalian tissues. We focus on the isolation of nuclei from mouse tissues, the extraction of PER complexes from the isolated nuclei, characterization of native PER complexes by gel filtration and blue native polyacrylamide gel electrophoresis, preparative immunoaffinity purification of PER complexes for mass spectrometric identification of constituent proteins, and chromatin immunoprecipitation to monitor the recruitment of PER complex proteins to CLOCK-BMAL1 at E-box sites of clock-regulated genes.


Assuntos
Complexos Multiproteicos/isolamento & purificação , Proteínas Circadianas Period/isolamento & purificação , Animais , Imunoprecipitação da Cromatina , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Humanos
14.
Novartis Found Symp ; 253: 250-62; discussion 102-9, 263-6, 281-4, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14712926

RESUMO

The circadian clock in the suprachiasmatic nucleus (SCN) is thought to drive daily rhythms of behaviour by secreting factors that act locally within the hypothalamus. In a systematic screen, we identified transforming growth factor (TGF)alpha as a likely SCN inhibitor of locomotion. TGFalpha is expressed rhythmically in the SCN, and when infused into the 3rd ventricle it reversibly inhibits locomotor activity and disrupts circadian sleep-wake cycles. These actions are mediated by epidermal growth factor (EGF) receptors, which we identified on neurons in the hypothalamic subparaventricular zone. Mice with a hypomorphic EGF receptor mutation exhibit excessive daytime locomotor activity and fail to suppress activity when exposed to light. These results implicate EGF receptor signalling in the daily control of locomotor activity, and they identify a neural circuit in the hypothalamus that likely mediates the regulation of behaviour both by the SCN and the retina.


Assuntos
Ritmo Circadiano/fisiologia , Receptores ErbB/fisiologia , Atividade Motora/fisiologia , Sono/fisiologia , Animais , Ritmo Circadiano/efeitos dos fármacos , Cricetinae , Receptores ErbB/genética , Hipotálamo/fisiologia , Atividade Motora/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/fisiologia , Transdução de Sinais , Sono/efeitos dos fármacos , Núcleo Supraquiasmático/fisiologia , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/farmacologia , Fator de Crescimento Transformador alfa/fisiologia
15.
Appl Bioinformatics ; 3(4): 261-4, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15702958

RESUMO

UNLABELLED: The analysis of complex patterns of gene regulation is central to understanding the biology of cells, tissues and organisms. Patterns of gene regulation pertaining to specific biological processes can be revealed by a variety of experimental strategies, particularly microarrays and other highly parallel methods, which generate large datasets linking many genes. Although methods for detecting gene expression have improved substantially in recent years, understanding the physiological implications of complex patterns in gene expression data is a major challenge. This article presents GoSurfer, an easy-to-use graphical exploration tool with built-in statistical features that allow a rapid assessment of the biological functions represented in large gene sets. GoSurfer takes one or two list(s) of gene identifiers (Affymetrix probe set ID) as input and retrieves all the Gene Ontology (GO) terms associated with the input genes. GoSurfer visualises these GO terms in a hierarchical tree format. With GoSurfer, users can perform statistical tests to search for the GO terms that are enriched in the annotations of the input genes. These GO terms can be highlighted on the GO tree. Users can manipulate the GO tree in various ways and interactively query the genes associated with any GO term. The user-generated graphics can be saved as graphics files, and all the GO information related to the input genes can be exported as text files. AVAILABILITY: GoSurfer is a Windows-based program freely available for noncommercial use and can be downloaded at http://www.gosurfer.org. Datasets used to construct the trees shown in the figures in this article are available at http://www.gosurfer.org/download/GoSurfer.zip.


Assuntos
Gráficos por Computador , Bases de Dados de Proteínas , Perfilação da Expressão Gênica/métodos , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Software , Interface Usuário-Computador , Regulação da Expressão Gênica/fisiologia
16.
Nat Struct Mol Biol ; 21(2): 126-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24413057

RESUMO

The mammalian circadian clock is built on a molecular feedback loop in which the Period (PER) proteins, acting in a large, poorly understood complex, repress Clock-Bmal1, the transcription factor driving their expression. We found that mouse PER complexes include the histone methyltransferase HP1γ-Suv39h. PER proteins recruited HP1γ-Suv39h to the Per1 and Per2 promoters, and HP1γ-Suv39h proved important for circadian di- and trimethylation of histone H3 Lys9 (H3K9) at the Per1 promoter, feedback repression and clock function. HP1γ-Suv39h was recruited to the Per1 and Per2 promoters ~4 h after recruitment of HDAC1, a PER-associated protein previously implicated in clock function and H3K9 deacetylation at the Per1 promoter. PER complexes containing HDAC1 or HP1γ-Suv39h appeared to be physically separable. Circadian clock negative feedback by the PER complex thus involves dynamic, ordered recruitment of repressive chromatin modifiers to DNA-bound Clock-Bmal1.


Assuntos
Montagem e Desmontagem da Cromatina , Relógios Circadianos/genética , Proteínas Circadianas Period/fisiologia , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Metilação , Metiltransferases/metabolismo , Camundongos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Repressoras/metabolismo
17.
Science ; 337(6094): 599-602, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22767893

RESUMO

Eukaryotic circadian clocks are built on transcriptional feedback loops. In mammals, the PERIOD (PER) and CRYPTOCHROME (CRY) proteins accumulate, form a large nuclear complex (PER complex), and repress their own transcription. We found that mouse PER complexes included RNA helicases DDX5 and DHX9, active RNA polymerase II large subunit, Per and Cry pre-mRNAs, and SETX, a helicase that promotes transcriptional termination. During circadian negative feedback, RNA polymerase II accumulated near termination sites on Per and Cry genes but not on control genes. Recruitment of PER complexes to the elongating polymerase at Per and Cry termination sites inhibited SETX action, impeding RNA polymerase II release and thereby repressing transcriptional reinitiation. Circadian clock negative feedback thus includes direct control of transcriptional termination.


Assuntos
Relógios Circadianos/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Transcrição Gênica , Animais , Criptocromos/genética , Criptocromos/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Camundongos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
18.
Science ; 332(6036): 1436-9, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21680841

RESUMO

Circadian rhythms in mammals are generated by a feedback loop in which the three PERIOD (PER) proteins, acting in a large complex, inhibit the transcriptional activity of the CLOCK-BMAL1 dimer, which represses their own expression. Although fundamental, the mechanism of negative feedback in the mammalian clock, or any eukaryotic clock, is unknown. We analyzed protein constituents of PER complexes purified from mouse tissues and identified PSF (polypyrimidine tract-binding protein-associated splicing factor). Our analysis indicates that PSF within the PER complex recruits SIN3A, a scaffold for assembly of transcriptional inhibitory complexes and that the PER complex thereby rhythmically delivers histone deacetylases to the Per1 promoter, which repress Per1 transcription. These findings provide a function for the PER complex and a molecular mechanism for circadian clock negative feedback.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Retroalimentação Fisiológica , Proteínas Circadianas Period/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/metabolismo , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Espectrometria de Massas , Camundongos , Fator de Processamento Associado a PTB , Proteínas Circadianas Period/metabolismo , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3 , Transcrição Gênica
19.
Science ; 327(5964): 463-6, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20093473

RESUMO

At the core of the mammalian circadian clock is a negative feedback loop in which the dimeric transcription factor CLOCK-BMAL1 drives processes that in turn suppress its transcriptional activity. To gain insight into the mechanisms of circadian feedback, we analyzed mouse protein complexes containing BMAL1. Receptor for activated C kinase-1 (RACK1) and protein kinase C-alpha (PKCalpha) were recruited in a circadian manner into a nuclear BMAL1 complex during the negative feedback phase of the cycle. Overexpression of RACK1 and PKCalpha suppressed CLOCK-BMAL1 transcriptional activity, and RACK1 stimulated phosphorylation of BMAL1 by PKCalpha in vitro. Depletion of endogenous RACK1 or PKCalpha from fibroblasts shortened the circadian period, demonstrating that both molecules function in the clock oscillatory mechanism. Thus, the classical PKC signaling pathway is not limited to relaying external stimuli but is rhythmically activated by internal processes, forming an integral part of the circadian feedback loop.


Assuntos
Ritmo Circadiano/fisiologia , Neuropeptídeos/metabolismo , Proteína Quinase C-alfa/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Núcleo Celular/metabolismo , Retroalimentação Fisiológica , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Fosforilação , Ligação Proteica , Interferência de RNA , Receptores de Quinase C Ativada , Transdução de Sinais , Transcrição Gênica
20.
Cell ; 130(4): 730-741, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17719549

RESUMO

Circadian clocks are widely distributed in mammalian tissues, but little is known about the physiological functions of clocks outside the suprachiasmatic nucleus of the brain. The retina has an intrinsic circadian clock, but its importance for vision is unknown. Here we show that mice lacking Bmal1, a gene required for clock function, had abnormal retinal transcriptional responses to light and defective inner retinal electrical responses to light, but normal photoreceptor responses to light and retinas that appeared structurally normal by light and electron microscopy. We generated mice with a retina-specific genetic deletion of Bmal1, and they had defects of retinal visual physiology essentially identical to those of mice lacking Bmal1 in all tissues and lacked a circadian rhythm of inner retinal electrical responses to light. Our findings indicate that the intrinsic circadian clock of the retina regulates retinal visual processing in vivo.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Retina/fisiologia , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Eletrorretinografia , Deleção de Genes , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Retina/citologia , Retina/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA