Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2014): 20230921, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196370

RESUMO

Large carnivores (order Carnivora) are among the world's most threatened mammals due to a confluence of ecological and social forces that have unfolded over centuries. Combining specimens from natural history collections with documents from archival records, we reconstructed the factors surrounding the extinction of the California grizzly bear (Ursus arctos californicus), a once-abundant brown bear subspecies last seen in 1924. Historical documents portrayed California grizzlies as massive hypercarnivores that endangered public safety. Yet, morphological measurements on skulls and teeth generate smaller body size estimates in alignment with extant North American grizzly populations (approx. 200 kg). Stable isotope analysis (δ13C, δ15N) of pelts and bones (n = 57) revealed that grizzlies derived less than 10% of their nutrition from terrestrial animal sources and were therefore largely herbivorous for millennia prior to the first European arrival in this region in 1542. Later colonial land uses, beginning in 1769 with the Mission era, led grizzlies to moderately increase animal protein consumption (up to 26% of diet), but grizzlies still consumed far less livestock than otherwise claimed by contemporary accounts. We show how human activities can provoke short-term behavioural shifts, such as heightened levels of carnivory, that in turn can lead to exaggerated predation narratives and incentivize persecution, triggering rapid loss of an otherwise widespread and ecologically flexible animal.


Assuntos
Ursidae , Animais , Humanos , Tamanho Corporal , California , Carnivoridade , Herbivoria
2.
Environ Chem ; 16(6): 482-493, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34316290

RESUMO

Because carbonaceous nanomaterials (CNMs) are expected to enter soils, the exposure implications to crop plants and plant-microbe interactions should be understood. Most investigations have been under ideal growth conditions, yet crops commonly experience abiotic and biotic stresses. Little is known how co-exposure to these environmental stresses and CNMs would cause combined effects on plants. We investigated the effects of 1000 mg kg-1 multiwalled carbon nanotubes (CNTs), graphene nanoplatelets (GNPs) and industrial carbon black (CB) on soybeans grown to the bean production stage in soil. Following seed sowing, plants became stressed by heat and infested with an insect (thrips). Consequently, all plants had similarly stunted growth, leaf damage, reduced final biomasses and fewer root nodules compared with healthy control soybeans previously grown without heat and thrips stresses. Thus, CNMs did not significantly influence the growth and yield of stressed soybeans, and the previously reported nodulation inhibition by CNMs was not specifically observed here. However, CNMs did significantly alter two leaf health indicators: the leaf chlorophyll a/b ratio, which was higher in the GNP treatment than in either the control (by 15 %) or CB treatment (by 14 %), and leaf lipid peroxidation, which was elevated in the CNT treatment compared with either the control (by 47 %) or GNP treatment (by 66 %). Overall, these results show that, while severe environmental stresses may impair plant production, CNMs (including CNTs and GNPs) in soil could additionally affect foliar health of an agriculturally important legume.

3.
Trends Ecol Evol ; 35(7): 551-554, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32416950

RESUMO

Species reintroductions involve considerable uncertainty, especially in highly altered landscapes. Historical, geographic, and taxonomic analogies can help reduce this uncertainty by enabling conservationists to better assess habitat suitability in proposed reintroduction sites. We illustrate this approach using the example of the California grizzly, an iconic species proposed for reintroduction.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Incerteza
4.
J Morphol ; 274(10): 1090-110, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23813920

RESUMO

Zebra Finches (Taeniopygia guttata) are the most commonly used laboratory songbird species, yet their embryological development has been poorly characterized. Most studies to date apply Hamburger and Hamilton stages derived from chicken development; however, significant differences in development between precocial and altricial species suggest that they may not be directly comparable. We provide the first detailed description of embryological development in the Zebra Finch under standard artificial incubation. These descriptions confirm that some of the features used to classify chicken embryos into stages are not applicable in an altricial bird such as the Zebra Finch. This staging protocol will help to standardize future studies of embryological development in the Zebra Finch.


Assuntos
Desenvolvimento Embrionário , Tentilhões/embriologia , Animais , Embrião de Galinha/crescimento & desenvolvimento , Galinhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA