Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 155: 104919, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33915206

RESUMO

Burkholderia mallei is a gram-negative obligate animal pathogen that causes glanders, a highly contagious and potentially fatal disease of solipeds including horses, mules, and donkeys. Humans are also susceptible, and exposure can result in a wide range of clinical forms, i.e., subclinical infection, chronic forms with remission and exacerbation, or acute and potentially lethal septicemia and/or pneumonia. Due to intrinsic antibiotic resistance and the ability of the organisms to survive intracellularly, current treatment regimens are protracted and complicated; and no vaccine is available. As a consequence of these issues, and since B. mallei is infectious by the aerosol route, B. mallei is regarded as a major potential biothreat agent. To develop optimal medical countermeasures and diagnostic tests, well characterized animal models of human glanders are needed. The goal of this study was to perform a head-to-head comparison of models employing three commonly used nonhuman primate (NHP) species, the African green monkey (AGM), Rhesus macaque, and the Cynomolgus macaque. The natural history of infection and in vitro clinical, histopathological, immunochemical, and bacteriological parameters were examined. The AGMs were the most susceptible NHP to B. mallei; five of six expired within 14 days. Although none of the Rhesus or Cynomolgus macaques succumbed, the Rhesus monkeys exhibited abnormal signs and clinical findings associated with B. mallei infection; and the latter may be useful for modeling chronic B. mallei infection. Based on the disease progression observations, gross and histochemical pathology, and humoral and cellular immune response findings, the AGM appears to be the optimal model of acute, lethal glanders infection. AGM models of infection by B. pseudomallei, the etiologic agent of melioidosis, have been characterized recently. Thus, the selection of the AGM species provides the research community with a single NHP model for investigations on acute, severe, inhalational melioidosis and glanders.


Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Mormo , Melioidose , Aerossóis , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Mormo/diagnóstico , Cavalos , Macaca mulatta
2.
BMC Immunol ; 21(1): 5, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013893

RESUMO

BACKGROUND: Melioidosis is endemic in Southeast Asia and Northern Australia and is caused by the Gram-negative, facultative intracellular pathogen Burkholderia pseudomallei. Diagnosis of melioidosis is often difficult because of the protean clinical presentation of the disease, and it may mimic other diseases, such as tuberculosis. There are many different strains of B. pseudomallei that have been isolated from patients with melioidosis, but it was not clear if they could cause a similar disease in a chronic BALB/c murine model of melioidosis. Hence, we wanted to examine chronically infected mice exposed to different strains of B. pseudomallei to determine if there were differences in the host immune response to the pathogen. RESULTS: We identified common host immune responses exhibited in chronically infected BALB/c mice, although there was some heterogeneity in the host response in chronically infected mice after exposure to different strains of B. pseudomallei. They all displayed pyogranulomatous lesions in their spleens with a large influx of monocytes/macrophages, NK cells, and neutrophils identified by flow cytometry. Sera from chronically infected mice by ELISA exhibited elevated IgG titers to the pathogen, and we detected by Luminex micro-bead array technology a significant increase in the expression of inflammatory cytokines/chemokines, such as IFN-γ, IL-1α, IL-1ß, KC, and MIG. By immunohistochemical and in situ RNA hybridization analysis we found that the increased expression of proinflammatory cytokines (IL-1α, IL-1ß, TNF-α, IFN-γ) was confined primarily to the area with the pathogen within pyogranulomatous lesions. We also found that cultured splenocytes from chronically infected mice could express IFN-γ, TNF-α, and MIP-1α ex vivo without the need for additional exogenous stimulation. In addition by flow cytometry, we detected significant amounts of intracellular expression of TNF-α and IFN-γ without a protein transport blocker in monocytes/macrophages, NK cells, and neutrophils but not in CD4+ or CD8+ T cells in splenocytes from chronically infected mice. CONCLUSION: Taken together the common features we have identified in chronically infected mice when 10 different human clinical strains of B. pseudomallei were examined could serve as biomarkers when evaluating potential therapeutic agents in mice for the treatment of chronic melioidosis in humans.


Assuntos
Burkholderia pseudomallei/fisiologia , Interferon gama/metabolismo , Melioidose/imunologia , Baço/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C
3.
Microb Pathog ; 142: 104050, 2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050093

RESUMO

The misuse of infectious disease pathogens as agents of deliberate attack on civilians and military personnel is a serious national security concern, which is exacerbated by the emergence of natural or genetically engineered multidrug resistant strains. In this study, the therapeutic potential of combinations of an antibiotic and a broad-spectrum antimicrobial peptide (AMP) was evaluated against five bacterial biothreats, the etiologic agents of glanders (Burkholderia mallei), melioidosis (Burkholderia pseudomallei), plague (Yersinia pestis), tularemia (Francisella tularensis), and anthrax (Bacillus anthracis). The therapeutics included licensed early generation antibiotics which are now rarely used. Three antibiotics and one 24- amino acid AMP were selected based on MIC assay data. Combinations of the AMP and tigecycline, minocycline, or novobiocin were screened for synergistic activity by checkerboard MIC assay. The combinations each enhanced the susceptibility of several strains. The tetracycline-peptide combinations increased the sensitivities of Y. pestis, F. tularensis, B. anthracis and B. pseudomallei, and the novobiocin-AMP combination augmented the sensitivity of all five. In time-kill assays, down-selected combinations of the peptide and minocycline or tigecycline enhanced killing of B. anthracis, Y. pestis, F. tularensis, and Burkholderia mallei but not B. pseudomallei. The novobiocin-AMP pair significantly reduced viability of all strains except B. mallei, which was very sensitive to the antibiotic alone. The results suggested that antibiotic-AMP combinations are useful tools for combating diverse pathogens. Future studies employing cell culture and animal models will utilize virulent strains of the agents to investigate the in vivo availability, host cytotoxicity, and protective efficacy of these therapeutics.

4.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29654186

RESUMO

In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of Bacillus anthracis that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of B. anthracis spores containing 3 × 1010 CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D10) values and irradiation doses required to ensure sterility (DSAL) to the point at which the probability of detecting a viable spore is 10-6 Furthermore, spores of a genetically tagged strain of B. anthracis strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of B. anthracis for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques.IMPORTANCE The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live Bacillus anthracis (anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated B. anthracis spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism.


Assuntos
Bacillus anthracis/efeitos da radiação , Raios gama , Viabilidade Microbiana/efeitos da radiação , Esporos Bacterianos/efeitos da radiação , Esterilização/métodos , Bacillus anthracis/fisiologia , Técnicas Microbiológicas/métodos , Estudos Retrospectivos , Esporos Bacterianos/fisiologia
5.
Microb Pathog ; 86: 53-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162294

RESUMO

Burkholderia pseudomallei is the etiologic agent of melioidosis, which is endemic in Southeast Asia and Northern Australia. We previously found by the intraperitoneal (IP) route that we could discern differences in virulence in mice amongst different strains of B. pseudomallei. We report an early immune response study comparing two strains in our collection which represent the least, B. pseudomallei 1106a, and one of the most, HBPUB10134a, virulent strains in BALB/c mice. B. pseudomallei HBPUB10134a infected mouse spleens contained a 2-3 log higher bacterial burden than mice infected with B. pseudomallei 1106a 3 days post-infection (PI). More and higher amounts of inflammatory cytokines/chemokines were detected in sera and spleen extracts from B. pseudomallei HBPUB10134a than B. pseudomallei 1106a infected mice. The most prominent were IFNγ, IL-1α, IL-1ß, IL-6, IL-10, IP-10, and MIG. After 7 days PI, there was a decrease in bacterial burden in spleens from 1106a infected mice and a decrease in cytokines/chemokines in sera and spleen extracts from both sets of mice. By day 14 PI we saw an increase in monocytes/macrophages, NK cells, and granulocytes in spleens from both sets of mice. No B. pseudomallei HBPUB10134a infected mice survived after this time. In summary, B. pseudomallei HBPUB10134a was more virulent and induced host innate immune responses typical of a more acute-type infection than did B. pseudomallei 1106a which produced a more chronic infection in mice.


Assuntos
Burkholderia pseudomallei/imunologia , Melioidose/imunologia , Melioidose/patologia , Animais , Sudeste Asiático , Austrália , Carga Bacteriana , Burkholderia pseudomallei/crescimento & desenvolvimento , Doença Crônica , Citocinas/análise , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Camundongos Endogâmicos BALB C , Soro/química , Baço/microbiologia , Baço/patologia , Virulência , Adulto Jovem
6.
PLoS Pathog ; 7(12): e1002469, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22241984

RESUMO

Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36-74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT.


Assuntos
Alelos , Antraz/genética , Bacillus anthracis , Cromossomos de Mamíferos/genética , Variação Genética , Imunidade Inata/genética , Animais , Antraz/imunologia , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Cromossomos de Mamíferos/imunologia , Inflamação/genética , Inflamação/imunologia , Camundongos , Locos de Características Quantitativas/imunologia
7.
Microb Pathog ; 57: 41-51, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23178382

RESUMO

A transposon insertional mutagenesis spore library of the pathogen Bacillus anthracis was screened to identify mutants altered in germination kinetics. One mutant exhibited an accelerated rate of germination in association with disruption of benK. This gene encodes a putative protein with high homology to membrane transporters that facilitate benzoate transport. We hypothesized that BenK may not be only spore associated, but also have a vegetative cell role. A reporter strain with a translational fusion of benK to green fluorescent protein demonstrated that full-length BenK was present in vegetative cells and that a BenK degradation product was present in spores by detecting the reporter using fluorescence and Western blot analysis. A minimum inhibitory concentration assay indicated that vegetative cells of a benK::Kan mutant were more susceptible to the antimicrobial effects of Na-benzoate. The mutant spores germinated to a greater extent within 1 h than the wild type in an in vitro fluorescence assay. The disruption of benK also resulted in spores that were less readily phagocytosed in a macrophage assay. Despite these altered in vitro phenotypes, no apparent effect of the BenK protein on virulence in the intranasal mouse model or the guinea pig competitive assay was observed. This work shows that, although the BenK protein does not impact fitness or virulence in an infection model, it is involved in other aspects of both the spore and vegetative forms of the organism.


Assuntos
Bacillus anthracis/fisiologia , Proteínas de Bactérias/genética , Fenótipo , Esporos Bacterianos , Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/patogenicidade , Aptidão Genética , Macrófagos/imunologia , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Mutação , Fagocitose/genética , Fagocitose/imunologia , Virulência
8.
J Immunol ; 184(1): 17-20, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19949100

RESUMO

Pathogenesis of Bacillus anthracis is associated with the production of lethal toxin (LT), which activates the murine Nalp1b/Nlrp1b inflammasome and induces caspase-1-dependent pyroptotic death in macrophages and dendritic cells. In this study, we investigated the effect of allelic variation of Nlrp1b on the outcome of LT challenge and infection by B. anthracis spores. Nlrp1b allelic variation did not alter the kinetics or pathology of end-stage disease induced by purified LT, suggesting that, in contrast to previous reports, macrophage lysis does not contribute directly to LT-mediated pathology. However, animals expressing a LT-sensitive allele of Nlrp1b showed an early inflammatory response to LT and increased resistance to infection by B. anthracis. Data presented here support a model whereby LT-mediated activation of Nlrp1b and subsequent lysis of macrophages is not a mechanism used by B. anthracis to promote virulence, but rather a protective host-mediated innate immune response.


Assuntos
Antraz/genética , Antraz/imunologia , Proteínas Reguladoras de Apoptose/genética , Predisposição Genética para Doença , Animais , Antígenos de Bactérias/toxicidade , Bacillus anthracis/imunologia , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/toxicidade , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Antibiotics (Basel) ; 11(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36551342

RESUMO

The microbial pathogens Burkholderia pseudomallei and Bacillus anthracis are unrelated bacteria, yet both are the etiologic agents of naturally occurring diseases in animals and humans and are classified as Tier 1 potential biothreat agents. B. pseudomallei is the gram-negative bacterial agent of melioidosis, a major cause of sepsis and mortality globally in endemic tropical and subtropical regions. B. anthracis is the gram-positive spore-forming bacterium that causes anthrax. Infections acquired by inhalation of these pathogens are challenging to detect early while the prognosis is best; and they possess innate multiple antibiotic resistance or are amenable to engineered resistance. Previous studies showed that the early generation, rarely used aminocoumarin novobiocin was very effective in vitro against a range of highly disparate biothreat agents. The objective of the current research was to begin to characterize the therapeutic efficacy of novobiocin in mouse models of anthrax and melioidosis. The antibiotic was highly efficacious against infections by both pathogens, especially B. pseudomallei. Our results supported the concept that specific older generation antimicrobials can be effective countermeasures against infection by bacterial biothreat agents. Finally, novobiocin was shown to be a potential candidate for inclusion in a combined pre-exposure vaccination and post-exposure treatment strategy designed to target bacterial pathogens refractory to a single medical countermeasure.

10.
Front Microbiol ; 13: 965518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060742

RESUMO

Burkholderia pseudomallei and the closely related species, Burkholderia mallei, produce similar multifaceted diseases which range from rapidly fatal to protracted and chronic, and are a major cause of mortality in endemic regions. Besides causing natural infections, both microbes are Tier 1 potential biothreat agents. Antibiotic treatment is prolonged with variable results, hence effective vaccines are urgently needed. The purpose of our studies was to compare candidate vaccines that target both melioidosis and glanders to identify the most efficacious one(s) and define residual requirements for their transition to the non-human primate aerosol model. Studies were conducted in the C57BL/6 mouse model to evaluate the humoral and cell-mediated immune response and protective efficacy of three Burkholderia vaccine candidates against lethal aerosol challenges with B. pseudomallei K96243, B. pseudomallei MSHR5855, and B. mallei FMH. The recombinant vaccines generated significant immune responses to the vaccine antigens, and the live attenuated vaccine generated a greater immune response to OPS and the whole bacterial cells. Regardless of the candidate vaccine evaluated, the protection of mice was associated with a dampened cytokine response within the lungs after exposure to aerosolized bacteria. Despite being delivered by two different platforms and generating distinct immune responses, two experimental vaccines, a capsule conjugate + Hcp1 subunit vaccine and the live B. pseudomallei 668 ΔilvI strain, provided significant protection and were down-selected for further investigation and advanced development.

11.
Vaccines (Basel) ; 9(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669472

RESUMO

The etiologic agent of plague, Yersinia pestis, is a globally distributed pathogen which poses both a natural and adversarial threat. Due largely to the rapid course and high mortality of pneumonic plague, vaccines are greatly needed. Two-component protein vaccines have been unreliable and potentially vulnerable to vaccine resistance. We evaluated the safety and efficacy of eight live Y. pestis strains derived from virulent strains CO92 or KIM6+ and mutated in one or more virulence-associated gene(s) or cured of plasmid pPst. Stringent, single-dose vaccination allowed down-selection of the two safest and most protective vaccine candidates, CO92 mutants pgm- pPst- and ΔyscN. Both completely protected BALB/c mice against subcutaneous and aerosol challenge with Y. pestis. Strain CD-1 outbred mice were more resistant to bubonic (but not pneumonic) plague than BALB/c mice, but the vaccines elicited partial protection of CD-1 mice against aerosol challenge, while providing full protection against subcutaneous challenge. A ΔyscN mutant of the nonencapsulated C12 strain was expected to display antigens previously concealed by the capsule. C12 ΔyscN elicited negligible titers to F1 but comparable antibody levels to whole killed bacteria, as did CO92 ΔyscN. Although one dose of C12 ΔyscN was not protective, vaccination with two doses of either CO92 ΔyscN, or a combination of the ΔyscN mutants of C12 and CO92, protected optimally against lethal bubonic or pneumonic plague. Protection against encapsulated Y. pestis required inclusion of F1 in the vaccine and was associated with high anti-F1 titers.

12.
Pathogens ; 9(2)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054106

RESUMO

Mouse models have been used to generate critical data for many infectious diseases. In the case of Burkholderia pseudomallei, mouse models have been invaluable for bacterial pathogenesis studies as well as for testing novel medical countermeasures including both vaccines and therapeutics. Mouse models of melioidosis have also provided a possible way forward to better understand the chronicity associated with this infection, as it appears that BALB/c mice develop an acute infection with B. pseudomallei, whereas the C57BL/6 model is potentially more suggestive of a chronic infection. Several unanswered questions, however, persist around this model. In particular, little attention has been paid to the effect of age or sex on the disease outcome in these animal models. In this report, we determined the LD50 of the B. pseudomallei K96243 strain in both female and male BALB/c and C57BL/6 mice in three distinct age groups. Our data demonstrated a modest increase in susceptibility associated with sex in this model, and we documented important histopathological differences associated with the reproductive systems of each sex. There was a statistically significant inverse correlation between age and susceptibility. The older mice, in most cases, were more susceptible to the infection. Additionally, our retrospective analyses suggested that the impact of animal supplier on disease outcome in mice may be minimal. These observations were consistent regardless of whether the mice were injected with bacteria intraperitoneally or if they were exposed to aerosolized bacteria. All of these factors should be considered when designing experiments using mouse models of melioidosis.

13.
Trop Med Infect Dis ; 5(2)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365605

RESUMO

Burkholderia pseudomallei and B. mallei are Gram-negative, facultative intracellular bacteria that cause melioidosis and glanders, respectively. Currently, there are no vaccines for these two diseases. Animal models have been developed to evaluate vaccines and therapeutics. Tissues from infected animals, however, must be fixed in formalin and embedded in paraffin (FFPE) before analysis. A brownish staining material in infected tissues that represents the exopolysaccharide of the pathogen was seen by bright field microscopy but not the actual microorganism. Because of these results, FFPE tissue was examined by laser scanning confocal microscopy (LSCM) in an attempt to see the microorganism. Archival FFPE tissues were examined from ten mice, and five nonhuman primates after exposure to B. pseudomallei or B. mallei by LSCM. Additionally, a historical spleen biopsy from a human suspected of exposure to B. mallei was examined. B. pseudomallei was seen in many of the infected tissues from mice. Four out of five nonhuman primates were positive for the pathogen. In the human sample, B. mallei was seen in pyogranulomas in the spleen biopsy. Thus, the presence of the pathogen was validated by LSCM in murine, nonhuman primate, and human FFPE tissues.

14.
J Bacteriol ; 191(24): 7587-96, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19837802

RESUMO

The Bacillus anthracis spore is the causative agent of the disease anthrax. The outermost structure of the B. anthracis spore, the exosporium, is a shell composed of approximately 20 proteins. The function of the exosporium remains poorly understood and is an area of active investigation. In this study, we analyzed the previously identified but uncharacterized exosporium protein ExsK. We found that, in contrast to other exosporium proteins, ExsK is present in at least two distinct locations, i.e., the spore surface as well as a more interior location underneath the exosporium. In spores that lack the exosporium basal layer protein ExsFA/BxpB, ExsK fails to encircle the spore and instead is present at only one spore pole, indicating that ExsK assembly to the spore is partially dependent on ExsFA/BxpB. In spores lacking the exosporium surface protein BclA, ExsK fails to mature into high-molecular-mass species observed in wild-type spores. These data suggest that the assembly and maturation of ExsK within the exosporium are dependent on ExsFA/BxpB and BclA. We also found that ExsK is not required for virulence in murine and guinea pig models but that it does inhibit germination. Based on these data, we propose a revised model of exosporium maturation and assembly and suggest a novel role for the exosporium in germination.


Assuntos
Bacillus anthracis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Esporos/crescimento & desenvolvimento , Animais , Antraz/microbiologia , Bacillus anthracis/química , Proteínas de Bactérias/genética , Feminino , Cobaias , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Esporos/química , Transativadores/genética , Transativadores/metabolismo , Virulência
15.
Vaccines (Basel) ; 7(4)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816945

RESUMO

The administration of antipyretic analgesics prior to, in conjunction with, or due to sequelae associated with vaccination is a common yet somewhat controversial practice. In the context of human vaccination, it is unclear if even short-term analgesic regimens can significantly alter the resulting immune response, as literature exists to support several scenarios including substantial immune interference. In this report, we used a live attenuated Yersinia pestis vaccine to examine the impact of analgesic administration on the immune response elicited by a single dose of a live bacterial vaccine in mice. Mice were assessed by evaluating natural and provoked behavior, as well as food and water consumption. The resulting immune responses were assessed by determining antibody titers against multiple antigens and assaying cellular responses in stimulated splenocytes collected from vaccinated animals. We observed no substantial benefit to the mice associated with the analgesic administration. Splenocytes from both C57BL/6 and BALB/c vaccinated mice receiving acetaminophen have a significantly reduced interferon-gamma (IFN-γ) recall response. Additionally, there is a significantly lower immunoglobulin (Ig)G2a/IgG1 ratio in vaccinated BALB/c mice treated with either acetaminophen or meloxicam and a significantly lower IgG2c/IgG1 ratio in vaccinated C57BL/6 mice treated with acetaminophen. Taken together, our data indicate that the use of analgesics, while possibly ethically warranted, may hinder the accurate characterization and evaluation of novel vaccine strategies with little to no appreciable benefits to the vaccinated mice.

16.
Microbes Infect ; 10(6): 613-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18467145

RESUMO

The role of macrophages in the pathogenesis of anthrax is unresolved. Macrophages are believed to support the initiation of infection by Bacillus anthracis spores, yet are also sporicidal. Furthermore, it is believed that the anthrax toxins suppress normal macrophage function. However, the significance of toxin effects on macrophages has not been addressed in an in vivo infection model. We used mutant derivatives of murine macrophage RAW264.7 cells that are toxin receptor-negative (R3D) to test the role of toxin-targeting of macrophages during a challenge with spores of the Ames strain of B. anthracis in both in vivo and in vitro models. We found that the R3D cells were able to control challenge with Ames when mice were inoculated with the cells prior to spore challenge. These findings were confirmed in vitro by high dose spore infection of macrophages. Interestingly, whereas the R3D cells provided a significantly greater survival advantage against spores than did the wild type RAW264.7 cells or R3D-complemented cells, the protection afforded the mutant and wild type cells was equivalent against a bacillus challenge. The findings appear to be the first specific test of the role of toxin targeting of macrophages during infection with B. anthracis spores.


Assuntos
Antraz/patologia , Antígenos de Bactérias/toxicidade , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Receptores de Peptídeos/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Animais , Antraz/imunologia , Antraz/mortalidade , Antígenos de Bactérias/imunologia , Bacillus anthracis/fisiologia , Toxinas Bacterianas/imunologia , Interações Hospedeiro-Parasita , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
17.
PLoS One ; 13(11): e0208277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30500862

RESUMO

Mouse models have been essential to generate supporting data for the research of infectious diseases. Burkholderia pseudomallei, the etiological agent of melioidosis, has been studied using mouse models to investigate pathogenesis and efficacy of novel medical countermeasures to include both vaccines and therapeutics. Previous characterization of mouse models of melioidosis have demonstrated that BALB/c mice present with an acute infection, whereas C57BL/6 mice have shown a tendency to be more resistant to infection and may model chronic disease. In this study, either BALB/c or C57BL/6 mice were exposed to aerosolized human clinical isolates of B. pseudomallei. The bacterial strains included HBPUB10134a (virulent isolate from Thailand), MSHR5855 (virulent isolate from Australia), and 1106a (relatively attenuated isolate from Thailand). The LD50 values were calculated and serial sample collections were performed in order to examine the bacterial burdens in tissues, histopathological features of disease, and the immune response mounted by the mice after exposure to aerosolized B. pseudomallei. These data will be important when utilizing these models for testing novel medical countermeasures. Additionally, by comparing highly virulent strains with attenuated isolates, we hope to better understand the complex disease pathogenesis associated with this bacterium.


Assuntos
Burkholderia pseudomallei/fisiologia , Melioidose/patologia , Animais , Formação de Anticorpos , Austrália/epidemiologia , Brônquios/imunologia , Brônquios/microbiologia , Brônquios/patologia , Burkholderia pseudomallei/patogenicidade , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Melioidose/sangue , Melioidose/epidemiologia , Melioidose/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tailândia/epidemiologia , Virulência
18.
PLoS One ; 12(2): e0172627, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28235018

RESUMO

Burkholderia pseudomallei, the etiologic agent of melioidosis, is a Gram negative bacterium designated as a Tier 1 threat. This bacterium is known to be endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. Inhalational melioidosis has been associated with monsoonal rains in endemic areas and is also a significant concern in the biodefense community. There are currently no effective vaccines for B. pseudomallei and antibiotic treatment can be hampered by non-specific symptomology and also the high rate of naturally occurring antibiotic resistant strains. Well-characterized animal models will be essential when selecting novel medical countermeasures for evaluation prior to human clinical trials. Here, we further characterize differences between the responses of BALB/c and C57BL/6 mice when challenged with low doses of a low-passage and well-defined stock of B. pseudomallei K96243 via either intraperitoneal or aerosol routes of exposure. Before challenge, mice were implanted with a transponder to collect body temperature readings, and daily body weights were also recorded. Mice were euthanized on select days for pathological analyses and determination of the bacterial burden in selected tissues (blood, lungs, liver, and spleen). Additionally, spleen homogenate and sera samples were analyzed to better characterize the host immune response after infection with aerosolized bacteria. These clinical, pathological, and immunological data highlighted and confirmed important similarities and differences between these murine models and exposure routes.


Assuntos
Burkholderia pseudomallei/imunologia , Imunidade Inata , Fígado/imunologia , Pulmão/imunologia , Melioidose/imunologia , Baço/imunologia , Administração por Inalação , Animais , Carga Bacteriana , Temperatura Corporal , Peso Corporal , Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia pseudomallei/patogenicidade , Contagem de Colônia Microbiana , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Granulócitos/imunologia , Granulócitos/microbiologia , Humanos , Injeções Intraperitoneais , Fígado/microbiologia , Pulmão/microbiologia , Subpopulações de Linfócitos/classificação , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/microbiologia , Melioidose/microbiologia , Melioidose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/microbiologia , Especificidade da Espécie , Baço/microbiologia
19.
Toxins (Basel) ; 7(8): 3167-78, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26287244

RESUMO

The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.


Assuntos
Antígenos de Bactérias/metabolismo , Bacillus anthracis/fisiologia , Toxinas Bacterianas/metabolismo , Esporos Bacterianos/fisiologia , Animais , Anticorpos Antifúngicos/imunologia , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/imunologia , Humanos , Macrófagos/imunologia , Esporos Bacterianos/imunologia , Esporos Bacterianos/patogenicidade
20.
PLoS One ; 10(9): e0137578, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26356298

RESUMO

Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer's exact test and Cramer's V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates.


Assuntos
Adaptação Biológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Burkholderia/microbiologia , Burkholderia/fisiologia , Evolução Molecular , Genoma Bacteriano , Animais , Proteínas de Bactérias/química , Burkholderia/classificação , Burkholderia/patogenicidade , Biologia Computacional , Deleção de Genes , Rearranjo Gênico , Genes Bacterianos , Humanos , Camundongos , Modelos Moleculares , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Seleção Genética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA