Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Manage ; 60(6): 1042-1061, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28905095

RESUMO

Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.


Assuntos
Planejamento de Cidades/organização & administração , Monitoramento Ambiental/métodos , Agricultura Florestal/organização & administração , Florestas , Árvores/crescimento & desenvolvimento , Arquivos , Planejamento de Cidades/história , Monitoramento Ambiental/história , Agricultura Florestal/história , História do Século XIX , História do Século XX , História do Século XXI , Pennsylvania , Fotografação , Folhas de Planta , Tecnologia de Sensoriamento Remoto , Urbanização
2.
Nat Commun ; 14(1): 6546, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863966

RESUMO

Many gut microorganisms critical to human health rely on nutrients produced by each other for survival; however, these cross-feeding interactions are still challenging to quantify and remain poorly characterized. Here, we introduce a Metabolite Exchange Score (MES) to quantify those interactions. Using metabolic models of prokaryotic metagenome-assembled genomes from over 1600 individuals, MES allows us to identify and rank metabolic interactions that are significantly affected by a loss of cross-feeding partners in 10 out of 11 diseases. When applied to a Crohn's disease case-control study, our approach identifies a lack of species with the ability to consume hydrogen sulfide as the main distinguishing microbiome feature of disease. We propose that our conceptual framework will help prioritize in-depth analyses, experiments and clinical targets, and that targeting the restoration of microbial cross-feeding interactions is a promising mechanism-informed strategy to reconstruct a healthy gut ecosystem.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Estudos de Casos e Controles , Metagenoma
3.
Sci Total Environ ; 806(Pt 2): 150566, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582864

RESUMO

Although anthropogenic activities contribute to the selection and spread of antibiotic resistance in aquatic environments, limited information is available from countries with absent or incomplete sewage treatment systems and the impact of their discharges onto water bodies. This study therefore aimed to characterize the genetic structure of colistin resistance (mcr) genes among Escherichia coli isolates recovered from surface waters and sediments in Ecuador. Out of 459 isolates, four Escherichia coli showed multidrug-resistant phenotypes, which harbored the mcr-1 gene and ß-lactamases, such as blaTEM, blaCTX-M-15, blaCTX-M-55, or blaCTX-M-65 genes. Three E. coli isolates (U20, U30 and U144) shared a similar genetic environment surrounding the mcr-1 gene, which was located on plasmids. Only one E. coli isolate (U175) showed that the mcr-1 gene was chromosomally located. Moreover, the core genome multilocus sequence typing (cgMLST) analysis revealed that these isolates belong to different lineages. This study represents the first detection of the mcr-1 gene in multidrug-resistant E. coli isolates from environmental samples in Ecuador.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos , Equador , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Plasmídeos
4.
ISME J ; 14(11): 2649-2658, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32647310

RESUMO

Diverse aerobic bacteria persist by consuming atmospheric hydrogen (H2) using group 1h [NiFe]-hydrogenases. However, other hydrogenase classes are also distributed in aerobes, including the group 2a [NiFe]-hydrogenase. Based on studies focused on Cyanobacteria, the reported physiological role of the group 2a [NiFe]-hydrogenase is to recycle H2 produced by nitrogenase. However, given this hydrogenase is also present in various heterotrophs and lithoautotrophs lacking nitrogenases, it may play a wider role in bacterial metabolism. Here we investigated the role of this enzyme in three species from different phylogenetic lineages and ecological niches: Acidithiobacillus ferrooxidans (phylum Proteobacteria), Chloroflexus aggregans (phylum Chloroflexota), and Gemmatimonas aurantiaca (phylum Gemmatimonadota). qRT-PCR analysis revealed that the group 2a [NiFe]-hydrogenase of all three species is significantly upregulated during exponential growth compared to stationary phase, in contrast to the profile of the persistence-linked group 1h [NiFe]-hydrogenase. Whole-cell biochemical assays confirmed that all three strains aerobically respire H2 to sub-atmospheric levels, and oxidation rates were much higher during growth. Moreover, the oxidation of H2 supported mixotrophic growth of the carbon-fixing strains C. aggregans and A. ferrooxidans. Finally, we used phylogenomic analyses to show that this hydrogenase is widely distributed and is encoded by 13 bacterial phyla. These findings challenge the current persistence-centric model of the physiological role of atmospheric H2 oxidation and extend this process to two more phyla, Proteobacteria and Gemmatimonadota. In turn, these findings have broader relevance for understanding how bacteria conserve energy in different environments and control the biogeochemical cycling of atmospheric trace gases.


Assuntos
Hidrogenase , Acidithiobacillus , Bactérias , Chloroflexus , Hidrogênio , Hidrogenase/genética , Hidrogenase/metabolismo , Oxirredução , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA