Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 194: 110501, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33221308

RESUMO

Increasing evidence from the home environment indicates that indoor microbiome exposure is associated with asthma development. However, indoor microbiome composition can be highly diverse and dynamic, and thus current studies fail to produce consistent results. Chinese university dormitories are special high-density dwellings with similar building and occupants characteristics, which facilitate to disentangle the complex interactions between microbes, environmental characteristics and asthma. Settled air dust and floor dust was collected from 87 dormitory rooms in Shanxi University. Bacterial communities were characterized by 16 S rRNA amplicon sequencing. Students (n = 357) were surveyed for asthma symptoms and measured for fractional exhaled nitric oxide (FeNO). Asthma was not associated with the overall bacterial richness but associated with specific phylogenetic classes. Taxa richness and abundance in Clostridia, including Ruminococcus, Blautia, Clostridium and Subdoligranulum, were positively associated with asthma (p < 0.05), and these taxa were mainly derived from the human gut. Taxa richness in Alphaproteobacteria and Actinobacteria were marginally protectively associated with asthma, and these taxa were mainly derived from the outdoor environment. Bacterial richness and abundance were not associated with FeNO levels. Building age was associated with overall bacterial community variation in air and floor dust (p < 0.05), but not associated with the asthma-related microorganisms. Our data shows that taxa from different phylogenetic classes and derived habitats have different health effects, indicating the importance of incorporating phylogenetic and ecological concepts in revealing patterns in the microbiome asthma association analysis.


Assuntos
Poluição do Ar em Ambientes Fechados , Asma , Poluição do Ar em Ambientes Fechados/análise , Asma/epidemiologia , China/epidemiologia , Poeira/análise , Humanos , Filogenia , Universidades
2.
Environ Sci Process Impacts ; 25(4): 791-804, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36883483

RESUMO

Rhinitis is one of the most prevalent chronic diseases globally. Microbiome exposure affects the occurrence of rhinitis. However, previous studies did not differentiate allergic rhinitis (AR) and non-allergic rhinitis (NAR) in the microbial association analysis. In this study, we investigate 347 students in 8 junior high schools, Terengganu, Malaysia, who were categorized as healthy (70.9%), AR (13.8%) and NAR (15.3%) based on a self-administered questionnaire and skin prick tests of pollen, pet, mould and house dust mite allergens. Classroom microbial and metabolite exposure in vacuumed dust was characterized by PacBio long-read amplicon sequencing, quantitative PCR and LC-MS-based untargeted metabolomics. Our findings indicate a similar microbial association pattern between AR and NAR. The richness in Gammaproteobacteria was negatively associated with AR and NAR symptoms, whereas total fungal richness was positively associated with AR and NAR symptoms (p < 0.05). Brasilonema bromeliae and Aeromonas enteropelogenes were negatively associated with AR and NAR, and Deinococcus was positively associated with AR and NAR (p < 0.01). Pipecolic acid was protectively associated with AR and NAR symptoms (OR = 0.06 and 0.13, p = 0.009 and 0.045). A neural network analysis showed that B. bromeliae was co-occurring with pipecolic acid, suggesting that the protective role of this species may be mediated by releasing pipecolic acid. Indoor relative humidity and the weight of vacuum dust were associated with AR and NAR, respectively (p < 0.05), but the health effects were mediated by two protective bacterial species, Aliinostoc morphoplasticum and Ilumatobacter fluminis. Overall, our study reported a similar microbial association pattern between AR and NAR and also revealed the complex interactions between microbial species, environmental characteristics, and rhinitis symptoms.


Assuntos
Microbiota , Rinite , Humanos , Rinite/diagnóstico , Rinite/epidemiologia , Estudantes , Poeira/análise , Metaboloma
3.
Environ Sci Process Impacts ; 23(8): 1171-1181, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34278392

RESUMO

Pathogens are commonly present in the human respiratory tract, but symptoms are varied among individuals. The interactions between pathogens, commensal microorganisms and host immune systems are important in shaping the susceptibility, development and severity of respiratory diseases. Compared to the extensive studies on the human microbiota, few studies reported the association between indoor microbiome exposure and respiratory infections. In this study, 308 students from 21 classrooms were randomly selected to survey the occurrence of respiratory infections in junior high schools of Johor Bahru, Malaysia. Vacuum dust was collected from the floor, chairs and desks of these classrooms, and high-throughput amplicon sequencing (16S rRNA and ITS) and quantitative PCR were conducted to characterize the absolute concentration of the indoor microorganisms. Fifteen bacterial genera in the classes Actinobacteria, Alphaproteobacteria, and Cyanobacteria were protectively associated with respiratory infections (p < 0.01), and these bacteria were mainly derived from the outdoor environment. Previous studies also reported that outdoor environmental bacteria were protectively associated with chronic respiratory diseases, such as asthma, but the genera identified were different between acute and chronic respiratory diseases. Four fungal genera from Ascomycota, including Devriesia, Endocarpon, Sarcinomyces and an unclassified genus from Herpotrichillaceae, were protectively associated with respiratory infections (p < 0.01). House dust mite (HDM) allergens and outdoor NO2 concentration were associated with respiratory infections and infection-related microorganisms. A causal mediation analysis revealed that the health effects of HDM and NO2 were partially or fully mediated by the indoor microorganisms. This is the first study to explore the association between environmental characteristics, microbiome exposure and respiratory infections in a public indoor environment, expanding our understanding of the complex interactions among these factors.


Assuntos
Poluição do Ar em Ambientes Fechados , Microbiota , Infecções Respiratórias , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Humanos , Malásia/epidemiologia , RNA Ribossômico 16S , Infecções Respiratórias/epidemiologia , Instituições Acadêmicas , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA