Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 433, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110235

RESUMO

High ammonia concentrations in anaerobic degradation systems cause volatile fatty acid accumulation and reduced methane yield, which often derive from restricted activity of syntrophic acid-oxidising bacteria and hydrogenotrophic methanogens. Inclusion of additives that facilitate the electron transfer or increase cell proximity of syntrophic species by flocculation can be a suitable strategy to counteract these problems, but its actual impact on syntrophic interactions has yet to be determined. In this study, microbial cultivation and molecular and microscopic analysis were performed to evaluate the impact of conductive (graphene, iron oxide) and non-conductive (zeolite) additives on the degradation rate of acetate and propionate to methane by highly enriched ammonia-tolerant syntrophic cultures derived from a biogas process. All additives had a low impact on the lag phase but resulted in a higher rate of acetate (except graphene) and propionate degradation. The syntrophic bacteria 'Candidatus Syntrophopropionicum ammoniitolerans', Syntrophaceticus schinkii and a novel hydrogenotrophic methanogen were found in higher relative abundance and higher gene copy numbers in flocculating communities than in planktonic communities in the cultures, indicating benefits to syntrophs of living in close proximity to their cooperating partner. Microscopy and element analysis showed precipitation of phosphates and biofilm formation in all batches except on the graphene batches, possibly enhancing the rate of acetate and propionate degradation. Overall, the concordance of responses observed in both acetate- and propionate-fed cultures highlight the suitability of the addition of iron oxide or zeolites to enhance acid conversion to methane in high-ammonia biogas processes. KEY POINTS: • All additives promoted acetate (except graphene) and propionate degradation. • A preference for floc formation by ammonia-tolerant syntrophs was revealed. • Microbes colonised the surfaces of iron oxide and zeolite, but not graphene.


Assuntos
Acetatos , Amônia , Compostos Férricos , Metano , Propionatos , Zeolitas , Propionatos/metabolismo , Amônia/metabolismo , Acetatos/metabolismo , Metano/metabolismo , Zeolitas/química , Compostos Férricos/metabolismo , Grafite , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/classificação , Biocombustíveis , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-35312473

RESUMO

An anaerobic bacterial strain, designated AMB_01T, recovered from mesophilic propionate enrichment of a high-ammonia biogas digester, was characterised using phenotypic and molecular taxonomic methods. Cells of AMB_01T are coccus-shaped and often occur arranged as diplococci or sarcina. Growth occurred at 20-45 °C, initial pH 5.5-8.5 and with up to 0.7 M NH4Cl, with optimum growth at 37-42 °C and pH 8.0. AMB_01T achieved high cell density and highest acetate production when grown on carbohydrates, including monomers, disaccharides and polysaccharides, such as glucose, maltose, cellobiose and starch. The strain was also able to use amino acids and some organic acids and alcoholic compounds for growth. Acetate was formed as the main product and yeast was not required for growth. The major cellular fatty acids were summed feature 4 (iso-C17 : 1I and/or anteiso-C17 : 1B), C18 : 1ω7, C14 : 0, C16 : 0 and summed feature 3 (C16 : 1ω7 and/or iso-C15 : 0 2OH). The highest 16S rRNA gene sequence similarity found was with Miniphocaeibacter massiliensis (96.6 %), within the family Peptoniphilaceae, phylum Bacillota (Firmicutes). The genomic DNA G+C content was 29.0 mol%. An almost complete set of genes for the acetyl-CoA pathway was found. Genome comparisons between AMB_01T and close relatives showed highest digital DNA-DNA hybridisation to Finegoldia magna (23 %), highest average nucleotide identity with genome nucleotide and amino acid sequences to M. massiliensis (72 and 73 %, respectively) and highest average nucleotide identity (87 %) with Schnuerera ultunensis, indicating that AMB_01T represents a novel species. Analysis of genomic, chemotaxonomic, biochemical and physiological data confirmed that strain AMB_01T represents a novel species, for which the name Miniphocaeibacter halophilus sp. nov. is proposed. The type strain is AMB_01T (=DSM 110247T=JCM 39107 T).


Assuntos
Compostos de Amônio , Biocombustíveis , Acetatos/análise , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Environ Microbiol ; 23(3): 1620-1637, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33400377

RESUMO

Inefficient syntrophic propionate degradation causes severe operating disturbances and reduces biogas productivity in many high-ammonia anaerobic digesters, but propionate-degrading microorganisms in these systems remain unknown. Here, we identified candidate ammonia-tolerant syntrophic propionate-oxidising bacteria using propionate enrichment at high ammonia levels (0.7-0.8 g NH3 L-1 ) in continuously-fed reactors. We reconstructed 30 high-quality metagenome-assembled genomes (MAGs) from the propionate-fed reactors, which revealed two novel species from the families Peptococcaceae and Desulfobulbaceae as syntrophic propionate-oxidising candidates. Both MAGs possess genomic potential for the propionate oxidation and electron transfer required for syntrophic energy conservation and, similar to ammonia-tolerant acetate degrading syntrophs, both MAGs contain genes predicted to link to ammonia and pH tolerance. Based on relative abundance, a Peptococcaceae sp. appeared to be the main propionate degrader and has been given the provisional name "Candidatus Syntrophopropionicum ammoniitolerans". This bacterium was also found in high-ammonia biogas digesters, using quantitative PCR. Acetate was degraded by syntrophic acetate-oxidising bacteria and the hydrogenotrophic methanogenic community consisted of Methanoculleus bourgensis and a yet to be characterised Methanoculleus sp. This work provides knowledge of cooperating syntrophic species in high-ammonia systems and reveals that ammonia-tolerant syntrophic propionate-degrading populations share common features, but diverge genomically and taxonomically from known species.


Assuntos
Amônia , Propionatos , Anaerobiose , Bactérias/genética , Reatores Biológicos , Humanos , Metano , Oxirredução
4.
Environ Sci Technol ; 53(9): 5512-5520, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30990997

RESUMO

Syntrophic acetate oxidation (SAO) plays a pivotal role in biogas production processes when aceticlastic methanogens are inhibited. Despite the importance of SAO, the metabolic interactions and syntrophic growth of the organisms involved are still poorly understood. Therefore, we studied growth parameters and interactions within constructed defined cocultures comprising the methanogen Methanoculleus bourgensis and one, or several, of the syntrophic acetate oxidizers Syntrophaceticus schinkii, [ Clostridium] ultunense, and Tepidanaerobacter acetatoxydans and a novel, uncharacterized bacterium. Cultivation experiments in a design-of-experiment approach revealed positive effects on methane production rate of increased ammonium levels (up to 0.2 M), temperature (up to 45 °C), and acetate concentrations (0.15-0.30 M). Molecular analyses and thermodynamic calculations demonstrated close interlinkages between the microorganisms, with available energies of -10 kJ/mol for acetate oxidation and -20 kJ/mol for hydrogenotrophic methanogenesis. The estimated generation time varied between 3 and 20 days for all syntrophic microorganisms involved, and the acetate minimum threshold level was 0.40-0.45 mM. The rate of methanogenesis depended on the SAO bacteria present in the culture. These data are beneficial for interpretation of SAO prevalence and competiveness against aceticlastic methanogens in anaerobic environments.


Assuntos
Acetatos , Metano , Bactérias , Biocombustíveis , Clostridium , Termodinâmica
5.
Water Sci Technol ; 80(9): 1662-1672, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32039898

RESUMO

Trace elements play a critical role for microbial activity in anaerobic digestion (AD) but their effects were probably overestimated in batch tests and should be comparably evaluated in continuous systems. In this study, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ were added in different concentrations to manure wastewater, and the effects were compared in both batch and continuous systems. The results were used to demonstrate suitable trace element compositions for AD of dairy and swine wastewater, and to compare the outcomes from batch and continuous systems. Fe2+ and Zn2+ were identified as being the most efficient stimulant of dairy and swine wastewater respectively. The addition of 5 mg/L Fe2+ and 0.4 mg/L Zn2+ increased the batch specific methane yield by 62% and 126% for dairy and swine wastewater, respectively. Nevertheless, a lower increment of 2% and 21%, for dairy and swine wastewater was obtained in the 120-day continuously-fed experiments. The 16S rRNA gene sequencing results indicated a relationship between the methanogens population, specific methanogenic activities, propionate, and dissolved hydrogen. Conclusively, the addition of a low dosage of Fe2+ and Zn2+ is a feasible strategy to enhance the methanogenic metabolism of the AD of dairy and swine wastewater respectively.


Assuntos
Oligoelementos , Águas Residuárias , Anaerobiose , Animais , Reatores Biológicos , Esterco , Metano , RNA Ribossômico 16S , Suínos
6.
Appl Microbiol Biotechnol ; 100(12): 5339-52, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26816092

RESUMO

Comparative analyses of bacterial and archaeal community structures and dynamics in three biogas digesters during start-up and subsequent operation using microwaved, ultrasonicated or untreated waste activated sludge were performed based on 454 pyrosequencing datasets of part of 16S ribosomal RNA sequences and quantitative PCR. The pre-treatment increased the solubility, and thus the availability of the substrate for microbial degradation and significantly affected the succession of the anaerobic community structure over the course of the digestion. Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in all digesters throughout operation. Proteobacteria decreased in relative abundance from 23-26 % to 11-13 % in association with enhanced substrate availability. Negative correlations between relative abundance of Alpha-, Beta- and Gammaproteobacteria and the substrate availability and/or biogas production were disclosed in statistical analyses. Clostridiales was the dominant order in Firmicutes, and Clostridiales, Clostridia and Firmicutes relative abundance and richness were shown to positively correlate with substrate availability and biogas generation. Methanogenic communities had a fairly restricted structure, highly dominated by Methanosaeta and Methanobrevibacter phylotypes. A gradual decline in Methanobrevibacter and increased representation of Methanosaeta concilii over time were particularly apparent in the digester receiving untreated waste activated sludge, whereas more diversified archaeal communities were maintained in the pre-treatment digesters. The quantitative PCR analyses revealed a methanogenic community distribution that coincided with the 454 pyrosequencing data.


Assuntos
Metano/biossíntese , Consórcios Microbianos/fisiologia , Micro-Ondas , Esgotos/microbiologia , Ondas Ultrassônicas , Anaerobiose/fisiologia , Anaerobiose/efeitos da radiação , Archaea/genética , Archaea/fisiologia , Archaea/efeitos da radiação , Bacteroidetes/genética , Bacteroidetes/fisiologia , Bacteroidetes/efeitos da radiação , Biocombustíveis , Reatores Biológicos/microbiologia , Euryarchaeota/genética , Euryarchaeota/fisiologia , Euryarchaeota/efeitos da radiação , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Consórcios Microbianos/genética , Consórcios Microbianos/efeitos da radiação , Proteobactérias/genética , Proteobactérias/fisiologia , Proteobactérias/efeitos da radiação , RNA Ribossômico 16S , Reação em Cadeia da Polimerase em Tempo Real , Esgotos/química
7.
Microbiol Resour Announc ; 13(4): e0001524, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466102

RESUMO

A complete genome was recovered from Citroniella saccharovorans, strain DSM 29873, using Oxford Nanopore Technologies. The genome assembly contains 1,413,868 bp with 30.23% G+C content. The species belongs to the family Peptoniphilaceae and, as of yet, is the only cultivated representative of the genus Citroniella.

8.
Front Microbiol ; 15: 1389257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933034

RESUMO

Microbial inhibition by high ammonia concentrations is a recurring problem that significantly restricts methane formation from intermediate acids, i.e., propionate and acetate, during anaerobic digestion of protein-rich waste material. Studying the syntrophic communities that perform acid conversion is challenging, due to their relatively low abundance within the microbial communities typically found in biogas processes and disruption of their cooperative behavior in pure cultures. To overcome these limitations, this study examined growth parameters and microbial community dynamics of highly enriched mesophilic and ammonia-tolerant syntrophic propionate and acetate-oxidizing communities and analyzed their metabolic activity and cooperative behavior using metagenomic and metatranscriptomic approaches. Cultivation in batch set-up demonstrated biphasic utilization of propionate, wherein acetate accumulated and underwent oxidation before complete degradation of propionate. Three key species for syntrophic acid degradation were inferred from genomic sequence information and gene expression: a syntrophic propionate-oxidizing bacterium (SPOB) "Candidatus Syntrophopropionicum ammoniitolerans", a syntrophic acetate-oxidizing bacterium (SAOB) Syntrophaceticus schinkii and a novel hydrogenotrophic methanogen, for which we propose the provisional name "Candidatus Methanoculleus ammoniitolerans". The results revealed consistent transcriptional profiles of the SAOB and the methanogen both during propionate and acetate oxidation, regardless of the presence of an active propionate oxidizer. Gene expression indicated versatile capabilities of the two syntrophic bacteria, utilizing both molecular hydrogen and formate as an outlet for reducing equivalents formed during acid oxidation, while conserving energy through build-up of sodium/proton motive force. The methanogen used hydrogen and formate as electron sources. Furthermore, results of the present study provided a framework for future research into ammonia tolerance, mobility, aggregate formation and interspecies cooperation.

9.
Waste Manag ; 189: 265-275, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217801

RESUMO

High-solid digestion (HSD) for biogas production is a resource-efficient and sustainable method to treat organic wastes with high total solids content and obtain renewable energy and an organic fertiliser, using a lower dilution rate than in the more common wet digestion process. This study examined the effect of reactor type on the performance of an HSD process, comparing plug-flow (PFR) type reactors developed for continuous HSD processes, and completely stirred-tank reactors (CSTRs) commonly used for wet digestion. The HSD process was operated in thermophilic conditions (52 °C), with a mixture of household waste, garden waste and agricultural residues (total solids content 27-28 %). The PFRs showed slightly better performance, with higher specific methane production and nitrogen mineralisation than the CSTRs, while the reduction of volatile solids was the same in both reactor types. Results from 16S rRNA gene sequencing showed a significant difference in the microbial population, potentially related to large differences in stirring speed between the reactor types (1 rpm in PFRs and 70-150 rpm in CSTRs, respectively). The bacterial community was dominated by the genus Defluviitoga in the PFRs and order MBA03 in the CSTRs. For the archaeal community, there was a predominance of the genus Methanoculleus in the PFRs, and of the genera Methanosarcina and Methanothermobacter in the CSTRs. Despite these shifts in microbiology, the results showed that stable digestion of substrates with high total solids content can be achieved in both reactor types, indicating flexibility in the choice of technique for HSD processes.


Assuntos
Reatores Biológicos , Reatores Biológicos/microbiologia , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Biocombustíveis/análise , Metano/análise , Metano/metabolismo , RNA Ribossômico 16S , Bactérias/metabolismo , Bactérias/genética , Archaea/metabolismo , Archaea/genética
10.
ISME J ; 17(11): 1966-1978, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37679429

RESUMO

Propionate is a key intermediate in anaerobic digestion processes and often accumulates in association with perturbations, such as elevated levels of ammonia. Under such conditions, syntrophic ammonia-tolerant microorganisms play a key role in propionate degradation. Despite their importance, little is known about these syntrophic microorganisms and their cross-species interactions. Here, we present metagenomes and metatranscriptomic data for novel thermophilic and ammonia-tolerant syntrophic bacteria and the partner methanogens enriched in propionate-fed reactors. A metagenome for a novel bacterium for which we propose the provisional name 'Candidatus Thermosyntrophopropionicum ammoniitolerans' was recovered, together with mapping of its highly expressed methylmalonyl-CoA pathway for syntrophic propionate degradation. Acetate was degraded by a novel thermophilic syntrophic acetate-oxidising candidate bacterium. Electron removal associated with syntrophic propionate and acetate oxidation was mediated by the hydrogen/formate-utilising methanogens Methanoculleus sp. and Methanothermobacter sp., with the latter observed to be critical for efficient propionate degradation. Similar dependence on Methanothermobacter was not seen for acetate degradation. Expression-based analyses indicated use of both H2 and formate for electron transfer, including cross-species reciprocation with sulphuric compounds and microbial nanotube-mediated interspecies interactions. Batch cultivation demonstrated degradation rates of up to 0.16 g propionate L-1 day-1 at hydrogen partial pressure 4-30 Pa and available energy was around -20 mol-1 propionate. These observations outline the multiple syntrophic interactions required for propionate oxidation and represent a first step in increasing knowledge of acid accumulation in high-ammonia biogas production systems.


Assuntos
Euryarchaeota , Propionatos , Propionatos/metabolismo , Amônia/metabolismo , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Acetatos/metabolismo , Methanobacteriaceae , Euryarchaeota/metabolismo , Formiatos/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo
11.
Appl Environ Microbiol ; 78(21): 7619-25, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923397

RESUMO

The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH(4)(+)-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors.


Assuntos
Acetatos/metabolismo , Amônia/metabolismo , Biocombustíveis/microbiologia , Reatores Biológicos , Clostridium/metabolismo , Anaerobiose , Animais , Bovinos , Fezes/microbiologia , Metano/química , Metano/metabolismo , Consórcios Microbianos , Oxirredução
12.
FEMS Microbiol Rev ; 46(2)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875063

RESUMO

The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes.


Assuntos
Euryarchaeota , Propionatos , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Euryarchaeota/metabolismo , Oxirredução , Propionatos/metabolismo
13.
Bioresour Technol ; 296: 122342, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31711908

RESUMO

The anaerobic digestion (AD) of chicken manure as a solo substrate has been challenging due to the ammonium inhibition effects when adopting a high organic loading rate (OLR). In this study, through increasing both the total solid in the feeding materials from 5% to 20%, and the OLR from 1.7 to 7.1 g-volatile solids (VS)/(L·d), the AD of chicken manure under wet, high solid, and dry conditions, with a fixed hydraulic retention time of 20 days, was investigated. The results obtained indicated that the wet AD system could achieve a methane yield of 0.28 L/g-VS and a low volatile fatty acid level. However, the process deteriorated under dry conditions, and methane formed mainly through acetate oxidation and methanogenesis. Methanosarcina and Methanoplasma were found to be more tolerant But, whether the dry AD of chicken manure can survive an ammonia-stressed environment when the OLR is lowered, still needs investigation.


Assuntos
Galinhas , Esterco , Anaerobiose , Animais , Biocombustíveis , Reatores Biológicos , Metano
14.
Bioengineering (Basel) ; 7(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877953

RESUMO

Acetate production from food waste or sewage sludge was evaluated in four semi-continuous anaerobic digestion processes. To examine the importance of inoculum and substrate for acid production, two different inoculum sources (a wastewater treatment plant (WWTP) and a co-digestion plant treating food and industry waste) and two common substrates (sewage sludge and food waste) were used in process operations. The processes were evaluated with regard to the efficiency of hydrolysis, acidogenesis, acetogenesis, and methanogenesis and the microbial community structure was determined. Feeding sewage sludge led to mixed acid fermentation and low total acid yield, whereas feeding food waste resulted in the production of high acetate and lactate yields. Inoculum from WWTP with sewage sludge substrate resulted in maintained methane production, despite a low hydraulic retention time. For food waste, the process using inoculum from WWTP produced high levels of lactate (30 g/L) and acetate (10 g/L), while the process initiated with inoculum from the co-digestion plant had higher acetate (25 g/L) and lower lactate (15 g/L) levels. The microbial communities developed during acid production consisted of the major genera Lactobacillus (92-100%) with food waste substrate, and Roseburia (44-45%) and Fastidiosipila (16-36%) with sewage sludge substrate. Use of the outgoing material (hydrolysates) in a biogas production system resulted in a non-significant increase in bio-methane production (+5-20%) compared with direct biogas production from food waste and sewage sludge.

15.
Bioresour Technol ; 272: 180-187, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30340183

RESUMO

Requirement of a long hydraulic retention time (HRT) for efficient degradation restrains the anaerobic digestion of hydrothermal pretreated sludge. Shortening the HRT can increase the treatment capacity of a plant but may also induce digester instability. This study investigated the impact of HRT on process performance and microbial community by consecutively operating a reactor for 145 days. The HRT was gradually decreased from 20 to 10, 5, and 3 days. The methane yield declined from 0.28 to 0.12 L/g-VSin with this shortening, and acetate concentration increased from 38 to 376 mg/L. Methanoculleus (58%) dominated methanogens at a 20 days HRT. However, the methanogenic structure shifted toward an increased level of Methanospirillum, representing 95% of the total archaea at a 3 days HRT. Microorganisms were almost washed out at the end of experiment. Conclusively, shortening HRTs is a feasible strategy to increase treatment capacity and produce more biogas at existing plants.


Assuntos
Metano/metabolismo , Esgotos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Hidrólise , Esgotos/química , Temperatura
16.
Waste Manag ; 94: 10-17, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279386

RESUMO

High solid anaerobic digestion (AD) is a promising technology for the treatment of organic waste in terms of efficient bioenergy production and digestate volume reduction. However, the high solid AD of chicken manure has been a challenge due to the inhibition effects caused by high ammonia levels. In this study, the addition of 280 mg/L Fe2+ and 2 mg/L Ni2+ has been proven to enhance the microbial activity and to overcome inhibition under the stressed environment. The mesophilic digesters feeding with total solid around 150 g/kg operated at an organic loading rate of 4.8 g/(L d) based on volatile solid and a 20-day hydraulic retention time. The total ammonia-nitrogen reached around 6.8 g/L in control and Fe-Ni digesters. The results from the 147-day continuously-fed experiment provided an increment of 34% methane production and a 29% reduction of volatile fatty acids against control. The acetoclastic and hydrogenotrophic methanogenic activity was increased by 89% and 40% respectively. The high throughout sequencing results showed an increased percentage of Methanosarcina sp., which may have contributed to the shifting of the methanogenic pathway towards acetoclastic methanogenesis. The positive effects of Fe2+ and Ni2+ supplementation obtained in this study lay the foundation for its use in AD of nitrogen rich materials.


Assuntos
Galinhas , Esterco , Anaerobiose , Animais , Reatores Biológicos , Suplementos Nutricionais , Redes e Vias Metabólicas , Metano
18.
Microb Biotechnol ; 11(4): 680-693, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29239113

RESUMO

To enrich syntrophic acetate-oxidizing bacteria (SAOB), duplicate chemostats were inoculated with sludge from syntrophic acetate oxidation (SAO)-dominated systems and continuously supplied with acetate (0.4 or 7.5 g l-1 ) at high-ammonia levels. The chemostats were operated under mesophilic (37°C) or thermophilic (52°C) temperature for about six hydraulic retention times (HRT 28 days) and were sampled over time. Irrespective of temperature, a methane content of 64-69% and effluent acetate level of 0.4-1.0 g l-1 were recorded in chemostats fed high acetate. Low methane production in the low-acetate chemostats indicated that the substrate supply was below the threshold for methanization of acetate via SAO. Novel representatives within the family Clostridiales and genus Syntrophaceticus (class Clostridia) were identified to represent putative SAOB candidates in mesophilic and thermophilic conditions respectively. Known SAOB persisted at low relative abundance in all chemostats. The hydrogenotrophic methanogens Methanoculleus bourgensis (mesophilic) and Methanothermobacter thermautotrophicus (thermophilic) dominated archaeal communities in the high-acetate chemostats. In line with the restricted methane production in the low-acetate chemostats, methanogens persisted at considerably lower abundance in these chemostats. These findings strongly indicate involvement in SAO and tolerance to high ammonia levels of the species identified here, and have implications for understanding community function in stressed anaerobic processes.


Assuntos
Acetatos/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Biocombustíveis/análise , Gases/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Metano , Oxirredução , Esgotos/microbiologia
19.
Bioresour Technol ; 256: 44-52, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29428613

RESUMO

The present study investigates the conversion of acetate, propionate and hydrogen consumption linked to the microbial community structure and related to temperature and substrate concentration. Biogas reactors were continuously fed with coffee powder (20 g-COD/L) or acetate (20, 40, and 60 g-COD/L) and operated for 193 days at 37 °C or 55 °C conditions. Starting HRT was 23 days which was then reduced to 7 days. The kinetics of acetate and propionate degradation and hydrogen consumption rates were measured in batch assays. At HRT 7 days, the degradation rate of propionate was higher in thermophilic batches, while acetate degradation rate was higher at mesophilic conditions. The gaseous hydrogen consumption in acetate reactors increased proportionally with temperature and substrate concentration, while the dissolved hydrogen was not affected. The relative high abundance of hydrogentrophic methanogens indicated that the methanogenesis was directed towards the syntrophic acetate oxidation pathway at high acetate concentration and high temperature.


Assuntos
Biocombustíveis , Hidrogênio , Propionatos , Reatores Biológicos , Euryarchaeota , Metano , Temperatura
20.
Bioresour Technol ; 264: 42-50, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29783130

RESUMO

The impact of temperature on the anaerobic digestion of chicken manure was investigated by studying the process performance and pathway for continuously-fed digesters under mesophilic and thermophilic conditions. The mesophilic digester obtained a 15% higher methane yield compared with the thermophilic digester. Mesophilic and thermophilic digester had free ammonia of 31 and 145 mg/L, respectively. The stable carbon isotope analysis indicated that 41% and 50% of acetate was converted to methane through the syntrophic acetate oxidation and hydrogenotrophic methanogenesis (SAO-HM) pathway under mesophilic and thermophilic conditions, respectively. The genus Pseudomonas represented 10% and 16% under mesophilic and thermophilic conditions, respectively. A high abundance of the methanogens genus Methanoculleus (94% of total methanogens) in mesophilic and the genus Methanothermobacter (96%) in thermophilic digesters indicated they were the main hydrogenotrophic partners in SAO. The present study therefore illustrated that methanogenic pathway shifting, induced by free ammonia, closely correlated to the process performance.


Assuntos
Reatores Biológicos , Metano/biossíntese , Amônia , Anaerobiose , Euryarchaeota , Nitrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA