RESUMO
Currently, routine diagnostics for spinocerebellar ataxia (SCA) look for polyQ repeat expansions and conventional variations affecting the proteins encoded by known SCA genes. However, ~40% of the patients still remain without a genetic diagnosis after routine tests. Increasing evidence suggests that variations in the enhancer regions of genes involved in neurodegenerative disorders can also cause disease. Since the enhancers of SCA genes are not yet known, it remains to be determined whether variations in these regions are a cause of SCA. In this pilot project, we aimed to identify the enhancers of the SCA genes ATXN1, ATXN3, TBP and ITPR1 in the human cerebellum using 4C-seq, publicly available datasets, reciprocal 4C-seq, and luciferase assays. We then screened these enhancers for copy number variants (CNVs) in a cohort of genetically undiagnosed SCA patients. We identified two active enhancers for each of the four SCA genes. CNV analysis did not reveal any CNVs in the enhancers of the four SCA genes in the genetically undiagnosed SCA patients. However, in one patient, we noted a CNV deletion with an unknown clinical significance near one of the ITPR1 enhancers. These results not only reveal elements involved in SCA gene regulation but can also lead to the discovery of novel SCA-causing genetic variants. As enhancer variations are being increasingly recognized as a cause of brain disorders, screening the enhancers of ATXN1, ATXN3, TBP and ITPR1 for variations other than CNVs and identifying and screening enhancers of other SCA genes might elucidate the genetic cause in undiagnosed patients.
Assuntos
Ataxina-1 , Ataxina-3 , Variações do Número de Cópias de DNA , Elementos Facilitadores Genéticos , Receptores de Inositol 1,4,5-Trifosfato , Ataxias Espinocerebelares , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Elementos Facilitadores Genéticos/genética , Ataxina-1/genética , Ataxias Espinocerebelares/genética , Ataxina-3/genética , Proteína de Ligação a TATA-Box/genética , Proteínas Repressoras/genética , Cerebelo/metabolismo , Cerebelo/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Projetos PilotoRESUMO
Desmoplakin (DP) is an important component of desmosomes, essential in cell-cell connecting structures in stress-bearing tissues. Over the years, many hundreds of pathogenic variants in DSP have been associated with different cutaneous and cardiac phenotypes or a combination, known as a cardiocutaneous syndrome. Of less than 5% of the reported DSP variants, the effect on the protein has been investigated. Here, we describe and have performed RNA, protein and tissue analysis in a large family where DSPc.273+5G>A/c.6687delA segregated with palmoplantar keratoderma (PPK), woolly hair and lethal cardiomyopathy, while DSPWT/c.6687delA segregated with PPK and milder cardiomyopathy. hiPSC-derived cardiomyocytes and primary keratinocytes from carriers were obtained for analysis. Unlike the previously reported nonsense variants in the last exon of DSP that bypassed the nonsense-mediated mRNA surveillance system leading to protein truncation, variant c.6687delA was shown to cause the loss of protein expression. Patients carrying both variants and having a considerably more severe phenotype were shown to have 70% DP protein reduction, while patients carrying only c.6687delA had 50% protein reduction and a milder phenotype. The analysis of RNA from patient cells did not show any splicing effect of the c.273+5G>A variant. However, a minigene splicing assay clearly showed alternative spliced transcripts originating from this variant. This study shows the importance of RNA and protein analyses to pinpoint the exact effect of DSP variants instead of solely relying on predictions. In addition, the particular pattern of inheritance, with simultaneous or separately segregating DSP variants within the same family, strongly supports the theory of a dose-dependent disease severity.
Assuntos
Cardiomiopatias , Ceratodermia Palmar e Plantar , Cardiomiopatias/genética , Cardiomiopatias/patologia , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Humanos , Ceratodermia Palmar e Plantar/genética , RNA , Índice de Gravidade de DoençaRESUMO
Only a limited number of studies have explored the possible associations between tumour grade and mutated genes in clear cell renal cell carcinoma (ccRCC), and we set out to investigate this further using a multiple sampling and next generation sequencing (NGS) approach in a series of ccRCCs. Multiple regions were sampled from formalin-fixated paraffin-embedded ccRCC tumour blocks from seven patients. In 27 samples from six patients, we performed targeted NGS using a custom 42-gene panel based on the most frequently mutated genes in ccRCC reported in public databases. In four samples from the seventh patient, we performed whole exome sequencing (WES) and array comparative genomic hybridisation for detection of copy number variants (CNVs). Mutated genes and the tumour grades of the samples in which they had been identified were compared both within and between all individual tumours. CNVs were compared across all samples from patient 7. We identified clear genetic heterogeneity within and across tumours, but VHL mutations were seen in all patients. Looking across all samples, we identified eleven genes that were only mutated in samples with one particular tumour grade. However, these genes were never mutated in all samples with that tumour grade. Increasing chromosomal instability corresponded with increasing tumour grade, but we observed minimal association between tumour grade and total mutational load in the WES data. Our study confirms the genetic heterogeneity and tumour grade heterogeneity of ccRCC. Although a relatively small number of samples was analysed, genes were identified that could potentially be specific, though insensitive, markers of higher ccRCC tumour grades.
Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Heterogeneidade Genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Mutação/genética , Idoso , Células Clonais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Sequenciamento do ExomaRESUMO
OBJECTIVE: Conventional genetic tests (quantitative fluorescent-PCR [QF-PCR] and single nucleotide polymorphism-array) only diagnose ~40% of fetuses showing ultrasound abnormalities. Rapid exome sequencing (rES) may improve this diagnostic yield, but includes challenges such as uncertainties in fetal phenotyping, variant interpretation, incidental unsolicited findings, and rapid turnaround times. In this study, we implemented rES in prenatal care to increase diagnostic yield. METHODS: We prospectively studied 55 fetuses. Inclusion criteria were: (a) two or more independent major fetal anomalies, (b) hydrops fetalis or bilateral renal cysts alone, or (c) one major fetal anomaly and a first-degree relative with the same anomaly. In addition to conventional genetic tests, we performed trio rES analysis using a custom virtual gene panel of ~3850 Online Mendelian Inheritance in Man (OMIM) genes. RESULTS: We established a genetic rES-based diagnosis in 8 out of 23 fetuses (35%) without QF-PCR or array abnormalities. Diagnoses included MIRAGE (SAMD9), Zellweger (PEX1), Walker-Warburg (POMGNT1), Noonan (PTNP11), Kabuki (KMT2D), and CHARGE (CHD7) syndrome and two cases of Osteogenesis Imperfecta type 2 (COL1A1). In six cases, rES diagnosis aided perinatal management. The median turnaround time was 14 (range 8-20) days. CONCLUSION: Implementing rES as a routine test in the prenatal setting is challenging but technically feasible, with a promising diagnostic yield and significant clinical relevance.
Assuntos
Anormalidades Múltiplas/diagnóstico , Sequenciamento do Exoma , Diagnóstico Pré-Natal/métodos , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Adulto , Testes Diagnósticos de Rotina/estatística & dados numéricos , Estudos de Viabilidade , Feminino , Feto/diagnóstico por imagem , Testes Genéticos/métodos , Testes Genéticos/estatística & dados numéricos , Humanos , Recém-Nascido , Masculino , Países Baixos/epidemiologia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes , Gravidez , Resultado da Gravidez/epidemiologia , Diagnóstico Pré-Natal/estatística & dados numéricos , Estudos Prospectivos , Ultrassonografia Pré-NatalRESUMO
PURPOSE: To enhance classification of variants of uncertain significance (VUS) in the DNA mismatch repair (MMR) genes in the cancer predisposition Lynch syndrome, we developed the cell-free in vitro MMR activity (CIMRA) assay. Here, we calibrate and validate the assay, enabling its integration with in silico and clinical data. METHODS: Two sets of previously classified MLH1 and MSH2 variants were selected from a curated MMR gene database, and their biochemical activity determined by the CIMRA assay. The assay was calibrated by regression analysis followed by symmetric cross-validation and Bayesian integration with in silico predictions of pathogenicity. CIMRA assay reproducibility was assessed in four laboratories. RESULTS: Concordance between the training runs met our prespecified validation criterion. The CIMRA assay alone correctly classified 65% of variants, with only 3% discordant classification. Bayesian integration with in silico predictions of pathogenicity increased the proportion of correctly classified variants to 87%, without changing the discordance rate. Interlaboratory results were highly reproducible. CONCLUSION: The CIMRA assay accurately predicts pathogenic and benign MMR gene variants. Quantitative combination of assay results with in silico analysis correctly classified the majority of variants. Using this calibration, CIMRA assay results can be integrated into the diagnostic algorithm for MMR gene variants.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Técnicas Genéticas , Células 3T3 , Animais , Teorema de Bayes , Calibragem , Simulação por Computador , Humanos , Técnicas In Vitro , Camundongos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
We have developed a tool for detecting single exon copy-number variations (CNVs) in targeted next-generation sequencing data: CoNVaDING (Copy Number Variation Detection In Next-generation sequencing Gene panels). CoNVaDING includes a stringent quality control (QC) metric, that excludes or flags low-quality exons. Since this QC shows exactly which exons can be reliably analyzed and which exons are in need of an alternative analysis method, CoNVaDING is not only useful for CNV detection in a research setting, but also in clinical diagnostics. During the validation phase, CoNVaDING detected all known CNVs in high-quality targets in 320 samples analyzed, giving 100% sensitivity and 99.998% specificity for 308,574 exons. CoNVaDING outperforms existing tools by exhibiting a higher sensitivity and specificity and by precisely identifying low-quality samples and regions.
Assuntos
Variações do Número de Cópias de DNA , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Bases de Dados Genéticas , Éxons , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software/normasRESUMO
Ribosomal Protein L22 (RPL22) encodes a protein that is a component of the 60S subunit of the ribosome. Variants in this gene have recently been linked to cancer development. Mutations in an A8 repeat in exon 2 were found in a recent study in 52% of microsatellite-unstable endometrial tumors. These tumors are particularly prone to mutations in repeats due to mismatch repair deficiency. We screened this coding repeat in our collection of microsatellite-unstable endometrial tumors (EC) and colorectal tumors (CRC). We found 50% mutation frequency for EC and 77% mutation frequency for CRC. These results confirm the previous study on the involvement of RPL22 in EC and, more importantly, reports for the first time such high mutation frequency in this gene in colorectal cancer. Furthermore, considering the high mutation frequency found, our data point toward an important role for RPL22 in microsatellite instability carcinogenesis.
Assuntos
Neoplasias Colorretais/genética , Neoplasias do Endométrio/genética , Frequência do Gene , Repetições de Microssatélites/genética , Mutação , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Sequência de Bases , Primers do DNA , Feminino , HumanosRESUMO
Microsatellite instability (MSI) in tumors results in an accumulation of mutations in (target) genes. Previous studies suggest that the profile of target genes differs according to tumor type. This paper describes the first genome-wide search for target genes for mismatch repair-deficient endometrial cancers. Genes expressed in normal endometrium containing coding repeats were analyzed for mutations in tumors. We identified 44 possible genes of which seven are highly mutated (>15%). Some candidates were also found mutated in colorectal and gastric tumors. The most frequently mutated gene, NRIP1 encoding nuclear receptor-interacting protein 1, was silenced in an endometrial tumor cell line and expression microarray experiments were performed. Silencing of NRIP1 was associated with differences in the expression of several genes in the estrogen-receptor network. Furthermore, an enrichment of genes related to cell cycle (regulation) and replication was observed. We present a new profile of target genes, some of them tissue specific, whereas others seem to play a more general role in MSI tumors. The high-mutation frequency combined with the expression data suggest, for the first time, an involvement of NRIP1 in endometrial cancer development.
Assuntos
Neoplasias do Endométrio/genética , Repetições de Microssatélites/genética , Receptores de Estrogênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Neoplasias do Endométrio/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Mutação , Proteínas Nucleares/genética , Proteína 1 de Interação com Receptor Nuclear , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Background and Objectives: The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of neurodegenerative disorders generally caused by single nucleotide variants (SNVs) or indels in coding regions or by repeat expansions in coding and noncoding regions of SCA genes. Copy number variants (CNVs) have now also been reported for 3 genes-ITPR1, FGF14, and SPTBN2-but not all SCA genes have been screened for CNVs as the underlying cause of the disease in patients. In this study, we aim to assess the prevalence of CNVs encompassing 36 known SCA genes. Methods: A cohort of patients with cerebellar ataxia who were referred to the University Medical Center Groningen for SCA genetic diagnostics was selected for this study. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed using the Infinium Global Screening Array. Following data processing, genotyping data were uploaded into NxClinical software to perform CNV analysis per patient and to visualize identified CNVs in 36 genes with allocated SCA symbols. The clinical relevance of detected CNVs was determined using evidence from studies based on PubMed literature searches for similar CNVs and phenotypic features. Results: Of the 338 patients with cerebellar ataxia, we identified putative clinically relevant CNV deletions in 3 patients: an identical deletion encompassing ITPR1 in 2 patients, who turned out to be related, and a deletion involving PPP2R2B in another patient. Although the CNV deletion in ITPR1 was clearly the underlying cause of SCA15 in the 2 related patients, the clinical significance of the deletion in PPP2R2B remained unknown. Discussion: We showed that CNVs detectable with the limited resolution of SNP array are a very rare cause of SCA. Nevertheless, we suggest adding CNV analysis alongside SNV analysis to SCA gene diagnostics using next-generation sequencing approaches, at least for ITPR1, to improve the genetic diagnostics for patients.
RESUMO
BACKGROUND: Splice prediction algorithms currently used in routine DNA diagnostics have limited sensitivity and specificity, therefore many potential splice variants are classified as variants of uncertain significance (VUSs). However, functional assessment of VUSs to test splicing is labour-intensive and time-consuming. We developed a decision tree to prioritise potential splice variants for functional studies and functionally verified the outcome of the decision tree. MATERIALS AND METHODS: We built the decision tree, SEPT-GD, by setting thresholds for the splice prediction programs implemented in Alamut. A set of 343 variants with known effects on splicing was used as control for sensitivity and specificity. We tested SEPT-GD using variants from a Dutch cardiomyopathy cohort of 2002 patients that were previously classified as VUS and predicted to have a splice effect according to diagnostic rules. We then selected 12 VUSs ranked by SEPT-GD to functionally verify the predicted effect on splicing using a minigene assay: 10 variants predicted to have a strong effect and 2 with a weak effect. RT-PCR was performed for nine variants. Variant classification was re-evaluated based on the functional test outcome. RESULTS: Compared to similar individually tested algorithms, SEPT-GD shows higher sensitivity (91 %) and comparable specificity (88 %) for both consensus (dinucleotides at the start and end of the intron, GT at the 5' end and AG at the 3' end) and non-consensus splice-site variants (excluding middle of exon variants). Using clinical diagnostic criteria, 1295 unique variants in our cardiomyopathy cohort had originally been classified as VUSs, with 57 predicted by Alamut to have an effect on splicing. Using SEPT-GD, we prioritised 31 variants in 40 patients. In the minigene assay, all 12 variants showed results concordant with SEPT-GD predictions. RT-PCR confirmed the minigene results for two variants, TMEM43 c.1000 + 5G > T and TTN c.25922-6 T > G. Based on all outcomes, the SGCD c.4-1G > A and CSRP3 c.282-5_285del variants were reclassified as likely pathogenic. CONCLUSION: SEPT-GD outperforms the tools commonly used for RNA splicing prediction and improves prioritisation of variants in cardiomyopathy genes for functional splicing analysis in a diagnostic setting.
Assuntos
Cardiomiopatias , Sítios de Splice de RNA , Humanos , Sítios de Splice de RNA/genética , Árvores de Decisões , Variação Genética , Splicing de RNA , Cardiomiopatias/diagnóstico , Cardiomiopatias/genéticaRESUMO
In this study, we investigate the influence of the seven genes (VHL, PBRM1, SETD2, BAP1, KDM5C, MTOR and TP53) most frequently mutated in clear cell renal cell cancer (ccRCC) on cancer-specific survival (CSS) in the prospective Netherlands Cohort Study on diet and cancer. DNA isolated from routinely archived formalin-fixed paraffin-embedded tumour blocks from 252 incident ccRCC cases was available for targeted next generation sequencing. Based on the sequencing quality and the completeness of information on clinical characteristics and follow-up, we could use 110 cases for survival analysis. The association with CSS for each mutated gene in these cases was tested using multivariable Cox proportional hazards models to estimate hazards ratios (HR) and confidence intervals (CIs), and we observed mutations in one or more of the seven genes in 64 out of 110 cases (58%). In the multivariable-adjusted analyses, mutations in VHL and PBRM1 were associated with better CSS (HRs (95% CI) 0.34 (0.13â0.89) and 0.17 (0.04-0.66), respectively), although these results were not statistically significant after multiple testing correction. No association was observed for the other five genes, which may be attributable to limited power.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/patologia , Estudos de Coortes , Feminino , Humanos , Neoplasias Renais/patologia , Masculino , Mutação , Proteínas Nucleares/genética , Prognóstico , Estudos Prospectivos , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genéticaRESUMO
Background: In the molecular genetic diagnostics of Mendelian disorders, solutions are needed for the major challenge of dealing with the large number of variants of uncertain significance (VUSs) identified using next-generation sequencing (NGS). Recently, promising approaches using constraint metrics to calculate case excess scores (CE), etiological fractions (EF), and gnomAD-derived constraint scores have been reported that estimate the likelihood of rare variants in specific genes or regions that are pathogenic. Our objective is to study the usability of these constraint data into variant interpretation in a diagnostic setting, using our cardiomyopathy cohort. Methods and Results: Patients (N = 2002) referred for clinical genetic diagnostics underwent NGS testing of 55-61 genes associated with cardiomyopathies. Previously classified likely pathogenic (LP) and pathogenic (P) variants were used to validate the use of data from CE, EF, and gnomAD constraint analyses for (re)classification of associated variant types in specific cardiomyopathy subtype-related genes. The classifications corroborated in 94% (354/378) of cases. Next, we reclassified 23 unique VUSs to LP, increasing the diagnostic yield by 1.2%. In addition, 106 unique VUSs (5.3% of patients) were prioritized for co-segregation or functional analyses. Conclusions: Our analysis confirms that the use of constraint metrics data can improve variant interpretation, and we, therefore, recommend using constraint scores on other cohorts and disorders and its inclusion in variant interpretation protocols.
RESUMO
Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges. To minimize the proportion of VUSes, follow-up studies are needed to aid in their reclassification as either (likely) pathogenic or (likely) benign variants. In this study, we addressed the challenge of prioritizing VUSes for follow-up using (a combination of) variant segregation studies, 3D protein modeling, in vitro splicing assays and functional assays. Of the 39 VUSes prioritized for further analysis, 13 were eligible for follow up. We were able to reclassify 4 of these VUSes to LP, increasing the molecular diagnostic yield by 1.1%. Reclassification of VUSes remains difficult due to limited possibilities for performing variant segregation studies in the classification process and the limited availability of routine functional tests.
RESUMO
Recently, an intronic biallelic (AAGGG)n repeat expansion in RFC1 was shown to be a cause of CANVAS and adult-onset ataxia in multiple populations. As the prevalence of the RFC1 repeat expansion in Dutch cases was unknown, we retrospectively tested 9 putative CANVAS cases and two independent cohorts (A and B) of 395 and 222 adult-onset ataxia cases, respectively, using the previously published protocol and, for the first time optical genome mapping to determine the size of the expanded RFC1 repeat. We identified the biallelic (AAGGG)n repeat expansion in 5/9 (55%) putative CANVAS patients and in 10/617 (1.6%; cohorts A + B) adult-onset ataxia patients. In addition to the AAGGG repeat motif, we observed a putative GAAGG repeat motif in the repeat expansion with unknown significance in two adult-onset ataxia patients. All the expanded (AAGGG)n repeats identified were in the range of 800-1299 repeat units. The intronic biallelic RFC1 repeat expansion thus explains a number of the Dutch adult-onset ataxia cases that display the main clinical features of CANVAS, and particularly when ataxia is combined with neuropathy. The yield of screening for RFC1 expansions in unselected cohorts is relatively low. To increase the current diagnostic yield in ataxia patients, we suggest adding RFC1 screening to the genetic diagnostic workflow by using advanced techniques that attain long fragments.
Assuntos
Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Adulto , Ataxia , Ataxia Cerebelar/genética , Humanos , Prevalência , Estudos RetrospectivosRESUMO
Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase function of these proteins in B. subtilis. Proteomics analyses revealed that sortase-mutant cells released elevated levels of the putative sortase substrate YfkN into the culture medium upon phosphate starvation. The results indicate that YfkN required sortase activity of YhcS for retention in the cell wall. To analyze sortase function in more detail, we focused attention on the potential sortase substrate YhcR, which is co-expressed with the sortase YhcS. Our results showed that the sortase recognition and cell-wall-anchoring motif of YhcR is functional when fused to the Bacillus pumilus chitinase ChiS, a readily detectable reporter protein that is normally secreted. The ChiS fusion protein is displayed at the cell wall surface when YhcS is co-expressed. In the absence of YhcS, or when no cell-wall-anchoring motif is fused to ChiS, the ChiS accumulates predominately in the culture medium. Taken together, these novel findings show that B. subtilis has a functional sortase for anchoring proteins to the cell wall.
Assuntos
Aminoaciltransferases/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Parede Celular/enzimologia , Quitinases/metabolismo , Cisteína Endopeptidases/genética , Dados de Sequência Molecular , Mutação , Fosfatos/metabolismoRESUMO
BACKGROUND: Next-generation sequencing (NGS) is increasingly used for clinical evaluation of cardiomyopathy patients as it allows for simultaneous screening of multiple cardiomyopathy-associated genes. Adding copy number variant (CNV) analysis of NGS data is not routine yet and may contribute to the diagnostic yield. OBJECTIVES: Determine the diagnostic yield of our targeted NGS gene panel in routine clinical diagnostics of Dutch cardiomyopathy patients and explore the impact of exon CNVs on diagnostic yield. METHODS: Patients (N = 2002) referred for clinical genetic analysis underwent diagnostic testing of 55-61 genes associated with cardiomyopathies. Samples were analyzed and evaluated for single nucleotide variants (SNVs), indels and CNVs. CNVs identified in the NGS data and suspected of being pathogenic based on type, size and location were confirmed by additional molecular tests. RESULTS: A (likely) pathogenic (L)P variant was detected in 22.7% of patients, including 3 with CNVs and 25 where a variant was identified in a gene currently not associated with the patient's cardiomyopathy subtype. Only 15 out of 2002 patients (0.8%) were found to carry two (L)P variants. CONCLUSION: The yield of routine clinical diagnostics of cardiomyopathies was relatively low when compared to literature. This is likely due to the fact that our study reports the outcome of patients in daily routine diagnostics, therefore also including patients not fully fulfilling (subtype specific) cardiomyopathy criteria. This may also explain why (L)P variants were identified in genes not associated with the reported subtype. The added value of CNV analysis was shown to be limited but not negligible.
Assuntos
Cardiomiopatias , Sequenciamento de Nucleotídeos em Larga Escala , Cardiomiopatias/diagnóstico , Cardiomiopatias/epidemiologia , Cardiomiopatias/genética , Variações do Número de Cópias de DNA , Testes Genéticos , HumanosRESUMO
Estrogens play a major role in the biology of hormone-responsive tissues but also in the normal physiology of various non-typical hormone-responsive tissues. In disease, estrogens have been associated with tumor development, in particular with tumors such as breast, endometrium, ovary and prostate. In this paper we will review the molecular mechanisms by which estrogens are involved in cancer development, with a special focus in Lynch syndrome related neoplasia. Further, we discuss the role estrogens might have on cell proliferation and apoptosis, how estrogens metabolites can induce DNA damage and we discuss a possible connection between estrogens and changes in DNA (hypo- and hyper) methylation. In this review we will also address the protective effect that high levels of estrogens have in MMR related neoplasias.
Assuntos
Neoplasias do Colo/induzido quimicamente , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias do Endométrio/induzido quimicamente , Estrogênios/toxicidade , Instabilidade de Microssatélites , Animais , Reparo de Erro de Pareamento de DNA , Feminino , Humanos , Receptores de Estrogênio/fisiologiaRESUMO
A progressive accumulation of genetic alterations underlies the adenoma-carcinoma sequence of colorectal cancer. This accumulation of mutations is driven by genetic instability, of which there are different types. Microsatellite instability (MSI) is the predominant type present in the tumours of Lynch syndrome patients and in a subset of sporadic tumours. It is generally accepted that MSI can be found in the early stages of tumour progression, such as adenomas; however, the frequencies reported vary widely among studies. Moreover, data on the qualitative differences between adenomas and carcinomas, or between tumours of hereditary and sporadic origin, are scarce. We compared MSI in samples of colorectal adenoma and colorectal carcinoma in order to identify possible differences along the adenoma-carcinoma sequence. We compared germline mismatch repair (MMR) gene mutation carriers and non-carriers, to address possible differences of instability patterns between Lynch syndrome patients and patients with sporadic tumours. We found a comparable relative frequency of mono- and dinucleotide instability in sporadic colorectal adenomas and carcinomas, dinucleotide instability being observed most frequently in these sporadic tumours. In MMR gene truncating mutation carriers, the profile was different: colorectal adenomas showed predominantly mononucleotide instability and in colorectal carcinomas, also more mononucleotide than dinucleotide instability was detected. We conclude that MSI profiles differ between sporadic and Lynch syndrome tumours, and that mononucleotide marker instability precedes dinucleotide marker instability during colorectal tumour development in Lynch syndrome patients. As mononucleotide MSI proves to be highly sensitive for detecting mutation carriers, we propose the use of mononucleotide markers for the identification of possible Lynch syndrome patients.
Assuntos
Adenoma/genética , Biomarcadores Tumorais/genética , Carcinoma/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Regulação Neoplásica da Expressão Gênica , Instabilidade de Microssatélites , Adenoma/patologia , Idade de Início , Carcinoma/patologia , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA , Análise Mutacional de DNA , Repetições de Dinucleotídeos , Mutação em Linhagem Germinativa , Heterozigoto , Humanos , Repetições de Microssatélites , Pessoa de Meia-IdadeRESUMO
It is well-established that germline mutations in the mismatch repair genes MLH1, MSH2, and MSH6 cause Lynch syndrome. However, mutations in these three genes do not account for all Lynch syndrome (suspected) families. Recently, it was shown that germline mutations in another mismatch repair gene, PMS2, play a far more important role in Lynch syndrome than initially thought. To explore this further, we determined the prevalence of pathogenic germline PMS2 mutations in a series of Lynch syndrome-suspected patients. Ninety-seven patients who had early-onset microsatellite instable colorectal or endometrial cancer, or multiple Lynch syndrome-associated tumors and/or were from an Amsterdam Criteria II-positive family were selected for this study. These patients carried no pathogenic germline mutation in MLH1, MSH2, or MSH6. When available, tumors were investigated for immunohistochemical staining (IHC) for PMS2. PMS2 was screened in all patients by exon-by-exon sequencing. We identified four patients with a pathogenic PMS2 mutation (4%) among the 97 patients we selected. IHC of PMS2 was informative in one of the mutation carriers, and in this case, the tumor showed loss of PMS2 expression. In conclusion, our study confirms the finding of previous studies that PMS2 is more frequently involved in Lynch syndrome than originally expected.
Assuntos
Adenosina Trifosfatases/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/patologia , Adenosina Trifosfatases/metabolismo , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/patologia , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Metilação de DNA , Análise Mutacional de DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Imuno-Histoquímica , Instabilidade de Microssatélites , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismoRESUMO
It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3' region of EPCAM cause transcriptional read-through which results in silencing of MSH2 by hypermethylation. We wanted to determine the prevalence of germline MLH1 promoter hypermethylation and of germline and somatic MSH2 promoter hypermethylation in a large group of Lynch syndrome-suspected patients. From a group of 331 Lynch Syndrome-suspected patients we selected cases, who had no germline MLH1, MSH2, or MSH6 mutation and whose tumors showed loss of MLH1 or MSH2, or, if staining was unavailable, had a tumor with microsatellite instability. Methylation assays were performed to test these patients for germline MLH1 and/or MSH2 promoter hypermethylation. Two patients with germline MLH1 promoter hypermethylation and no patients with germline MSH2 promoter hypermethylation were identified. In the subgroup screened for germline MSH2 promoter hypermethylation, we identified 3 patients with somatic MSH2 promoter hypermethylation in their tumors, which was caused by a germline EPCAM deletion. In the group of 331 Lynch Syndrome-suspected patients, the frequencies of germline MLH1 promoter hypermethylation and somatic MSH2 promoter hypermethylation caused by germline EPCAM deletions are 0.6 and 0.9%, respectively. These mutations, therefore, seem to be rather infrequent. However, the contribution of germline MLH1 hypermethylation and EPCAM deletions to the genetically proven Lynch syndrome cases in this cohort is very high. Previously 27 pathogenic mutations were identified; the newly identified mutations now represent 16% of all mutations.