Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7969): 300-304, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316658

RESUMO

Photosynthesis is generally assumed to be initiated by a single photon1-3 from the Sun, which, as a weak light source, delivers at most a few tens of photons per nanometre squared per second within a chlorophyll absorption band1. Yet much experimental and theoretical work over the past 40 years has explored the events during photosynthesis subsequent to absorption of light from intense, ultrashort laser pulses2-15. Here, we use single photons to excite under ambient conditions the light-harvesting 2 (LH2) complex of the purple bacterium Rhodobacter sphaeroides, comprising B800 and B850 rings that contain 9 and 18 bacteriochlorophyll molecules, respectively. Excitation of the B800 ring leads to electronic energy transfer to the B850 ring in approximately 0.7 ps, followed by rapid B850-to-B850 energy transfer on an approximately 100-fs timescale and light emission at 850-875 nm (refs. 16-19). Using a heralded single-photon source20,21 along with coincidence counting, we establish time correlation functions for B800 excitation and B850 fluorescence emission and demonstrate that both events involve single photons. We also find that the probability distribution of the number of heralds per detected fluorescence photon supports the view that a single photon can upon absorption drive the subsequent energy transfer and fluorescence emission and hence, by extension, the primary charge separation of photosynthesis. An analytical stochastic model and a Monte Carlo numerical model capture the data, further confirming that absorption of single photons is correlated with emission of single photons in a natural light-harvesting complex.


Assuntos
Complexos de Proteínas Captadores de Luz , Fótons , Fotossíntese , Rhodobacter sphaeroides , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Fluorescência , Processos Estocásticos , Método de Monte Carlo
2.
Phys Rev Lett ; 131(10): 100202, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739369

RESUMO

Entanglement is a key resource for quantum information technologies ranging from quantum sensing to quantum computing. Conventionally, the entanglement between two coupled qubits is established at the timescale of the inverse of the coupling strength. In this Letter, we study two weakly coupled non-Hermitian qubits and observe entanglement generation at a significantly shorter timescale by proximity to a higher-order exceptional point. We establish a non-Hermitian perturbation theory based on constructing a biorthogonal complete basis and further identify the optimal condition to obtain the maximally entangled state. Our study of speeding up entanglement generation in non-Hermitian quantum systems opens new avenues for harnessing coherent nonunitary dissipation for quantum technologies.

3.
Nature ; 543(7647): 647-656, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28358065

RESUMO

Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.


Assuntos
Biofísica , Modelos Biológicos , Modelos Químicos , Elétrons , Transferência de Energia , Metais/química , Modelos Moleculares , Movimento (Física) , Teoria Quântica , Análise Espectral , Fatores de Tempo , Vibração
4.
J Chem Phys ; 159(13)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37795784

RESUMO

We use quantum trajectory theory to study the dynamics of the first step in photosynthesis for a single photon interacting with photosystem II (PSII). By considering individual trajectories we are able to look beyond the ensemble average dynamics to compute the PSII system evolution conditioned upon individual photon counting measurements. Measurements of the transmitted photon beam strongly affects the system state, since detection of an outgoing photon confirms that the PSII must be in the electronic ground state, while a null measurement implies it is in an excited electronic state. We show that under ideal conditions, observing the null result transforms a state with a low excited state population to a state with nearly all population contained in the excited states. We study the PSII dynamics conditioned on such photon counting for both a pure excitonic model of PSII and a more realistic model with exciton-phonon coupling to a dissipative phononic environment. In the absence of such coupling, we show that the measured fluorescence rates show oscillations constituting a photon-counting witness of excitonic coherence. Excitonic coupling to the phonon environment has a strong effect on the observed rates of fluorescence, damping the oscillations. Addition of non-radiative decay and incoherent transitions to radical pair states in the reaction center to the phononic model allows extraction of a quantum efficiency of 92.5% from the long-time evolution, consistent with bulk experimental measurements.

5.
Nature ; 538(7626): 491-494, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27706145

RESUMO

In quantum mechanics, measurements cause wavefunction collapse that yields precise outcomes, whereas for non-commuting observables such as position and momentum Heisenberg's uncertainty principle limits the intrinsic precision of a state. Although theoretical work has demonstrated that it should be possible to perform simultaneous non-commuting measurements and has revealed the limits on measurement outcomes, only recently has the dynamics of the quantum state been discussed. To realize this unexplored regime, we simultaneously apply two continuous quantum non-demolition probes of non-commuting observables to a superconducting qubit. We implement multiple readout channels by coupling the qubit to multiple modes of a cavity. To control the measurement observables, we implement a 'single quadrature' measurement by driving the qubit and applying cavity sidebands with a relative phase that sets the observable. Here, we use this approach to show that the uncertainty principle governs the dynamics of the wavefunction by enforcing a lower bound on the measurement-induced disturbance. Consequently, as we transition from measuring identical to measuring non-commuting observables, the dynamics make a smooth transition from standard wavefunction collapse to localized persistent diffusion and then to isotropic persistent diffusion. Although the evolution of the state differs markedly from that of a conventional measurement, information about both non-commuting observables is extracted by keeping track of the time ordering of the measurement record, enabling quantum state tomography without alternating measurements. Our work creates novel capabilities for quantum control, including rapid state purification, adaptive measurement, measurement-based state steering and continuous quantum error correction. As physical systems often interact continuously with their environment via non-commuting degrees of freedom, our work offers a way to study how notions of contemporary quantum foundations arise in such settings.

6.
J Chem Phys ; 156(24): 244108, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778074

RESUMO

We develop a method to simulate the excitonic dynamics of realistic photosynthetic light harvesting systems, including non-Markovian coupling to phonon degrees of freedom, under excitation by N-photon Fock state pulses. This method combines the input-output and the hierarchical equations of motion formalisms into a double hierarchy of density matrix equations. We show analytically that under weak field excitation relevant to natural photosynthesis conditions, an N-photon Fock state input and a corresponding coherent state input give rise to equal density matrices in the excited manifold. However, an N-photon Fock state input induces no off-diagonal coherence between the ground and excited subspaces, in contrast with the coherences created by a coherent state input. We derive expressions for the probability to absorb a single Fock state photon with or without the influence of phonons. For short pulses (or, equivalently, wide bandwidth pulses), we show that the absorption probability has a universal behavior that depends only upon a system-dependent effective energy spread parameter Δ and an exciton-light coupling constant Γ. This holds for a broad range of chromophore systems and for a variety of pulse shapes. We also analyze the absorption probability in the opposite long pulse (narrow bandwidth) regime. We then derive an expression for the long time emission rate in the presence of phonons and use it to study the difference between collective vs independent emission. Finally, we present a numerical simulation for the LHCII monomer (14-mer) system under single photon excitation that illustrates the use of the double hierarchy equations.


Assuntos
Fótons , Fotossíntese
7.
J Chem Phys ; 154(12): 121101, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810679

RESUMO

Photo-emission spectroscopy directly probes individual electronic states, ranging from single excitations to high-energy satellites, which simultaneously represent multiple quasiparticles (QPs) and encode information about electronic correlation. The first-principles description of the spectra requires an efficient and accurate treatment of all many-body effects. This is especially challenging for inner valence excitations where the single QP picture breaks down. Here, we provide the full valence spectra of small closed-shell molecules, exploring the independent and interacting quasiparticle regimes, computed with the fully correlated adaptive sampling configuration interaction method. We critically compare these results to calculations with the many-body perturbation theory, based on the GW and vertex corrected GWΓ approaches. The latter explicitly accounts for two-QP quantum interactions, which have often been neglected. We demonstrate that for molecular systems, the vertex correction universally improves the theoretical spectra, and it is crucial for the accurate prediction of QPs as well as capturing the rich satellite structures of high-energy excitations. GWΓ offers a unified description across all relevant energy scales. Our results suggest that the multi-QP regime corresponds to dynamical correlations, which can be described via perturbation theory.

8.
J Chem Phys ; 148(10): 102338, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29544271

RESUMO

The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

9.
J Chem Phys ; 147(15): 154105, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29055342

RESUMO

Approximate full configuration interaction (FCI) calculations have recently become tractable for systems of unforeseen size, thanks to stochastic and adaptive approximations to the exponentially scaling FCI problem. The result of an FCI calculation is a weighted set of electronic configurations, which can also be expressed in terms of excitations from a reference configuration. The excitation amplitudes contain information on the complexity of the electronic wave function, but this information is contaminated by contributions from disconnected excitations, i.e., those excitations that are just products of independent lower-level excitations. The unwanted contributions can be removed via a cluster decomposition procedure, making it possible to examine the importance of connected excitations in complicated multireference molecules which are outside the reach of conventional algorithms. We present an implementation of the cluster decomposition analysis and apply it to both true FCI wave functions, as well as wave functions generated from the adaptive sampling CI algorithm. The cluster decomposition is useful for interpreting calculations in chemical studies, as a diagnostic for the convergence of various excitation manifolds, as well as as a guidepost for polynomially scaling electronic structure models. Applications are presented for (i) the double dissociation of water, (ii) the carbon dimer, (iii) the π space of polyacenes, and (iv) the chromium dimer. While the cluster amplitudes exhibit rapid decay with an increasing rank for the first three systems, even connected octuple excitations still appear important in Cr2, suggesting that spin-restricted single-reference coupled-cluster approaches may not be tractable for some problems in transition metal chemistry.

10.
J Chem Phys ; 144(24): 245101, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369543

RESUMO

We simulate the long-range inter-complex electronic energy transfer in photosystem II-from the antenna complex, via a core complex, to the reaction center-using a non-Markovian (ZOFE) quantum master equation description that allows the electronic coherence involved in the energy transfer to be explicitly included at all length scales. This allows us to identify all locations where coherence is manifested and to further identify the pathways of the energy transfer in the full network of coupled chromophores using a description based on excitation probability currents. We investigate how the energy transfer depends on the initial excitation-localized, coherent initial excitation versus delocalized, incoherent initial excitation-and find that the overall energy transfer is remarkably robust with respect to such strong variations of the initial condition. To explore the importance of vibrationally enhanced transfer and to address the question of optimization in the system parameters, we systematically vary the strength of the coupling between the electronic and the vibrational degrees of freedom. We find that the natural parameters lie in a (broad) region that enables optimal transfer efficiency and that the overall long-range energy transfer on a ns time scale appears to be very robust with respect to variations in the vibronic coupling of up to an order of magnitude. Nevertheless, vibrationally enhanced transfer appears to be crucial to obtain a high transfer efficiency, with the latter falling sharply for couplings outside the optimal range. Comparison of our full quantum simulations to results obtained with a "classical" rate equation based on a modified-Redfield/generalized-Förster description previously used to simulate energy transfer dynamics in the entire photosystem II complex shows good agreement for the overall time scales of excitation energy transport.


Assuntos
Transferência de Energia , Modelos Teóricos , Complexo de Proteína do Fotossistema II/química , Simulação por Computador , Elétrons , Teoria Quântica , Vibração
11.
J Chem Phys ; 145(4): 044112, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27475353

RESUMO

Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr2 molecule. We demonstrate for systems like Cr2 that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C2.

12.
Phys Rev Lett ; 113(18): 188102, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25396397

RESUMO

A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Complexos de Proteínas Captadores de Luz/química , Proteobactérias/química , Teoria Quântica
13.
Phys Rev Lett ; 112(11): 113601, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702367

RESUMO

Continuous quantum measurement is the backbone of various methods in quantum control, quantum metrology, and quantum information. Here, we present a generalized formulation of dispersive measurement of a complex quantum systems. We describe the complex system as an open quantum system that is strongly coupled to a non-Markovian environment, enabling the treatment of a broad variety of natural or engineered complex systems. The system is monitored via a probe resonator coupled to a broadband (Markovian) reservoir. Based on this model, we derive a formalism of stochastic hierarchy equations of motion describing the decoherence dynamics of the system conditioned on the measurement record. Furthermore, we demonstrate a spectroscopy method based on weak quantum measurement to reveal the non-Markovian nature of the environment, which we term weak spectroscopy.

14.
Phys Rev Lett ; 112(17): 170501, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836225

RESUMO

The creation of a quantum network requires the distribution of coherent information across macroscopic distances. We demonstrate the entanglement of two superconducting qubits, separated by more than a meter of coaxial cable, by designing a joint measurement that probabilistically projects onto an entangled state. By using a continuous measurement scheme, we are further able to observe single quantum trajectories of the joint two-qubit state, confirming the validity of the quantum Bayesian formalism for a cascaded system. Our results allow us to resolve the dynamics of continuous projection onto the entangled manifold, in quantitative agreement with theory.

15.
J Chem Theory Comput ; 20(8): 3109-3120, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573104

RESUMO

We test the performance of self-consistent GW and several representative implementations of vertex-corrected G0W0 (G0W0Γ). These approaches are tested on benchmark data sets covering full valence spectra (first ionization potentials and some inner valence shell excitations). For small molecules, when comparing against state-of-the-art wave function techniques, our results show that full self-consistency in the GW scheme either systematically outperforms vertex-corrected G0W0 or gives results of at least comparative quality. Moreover, G0W0Γ results in additional computational cost when compared to G0W0 or self-consistent GW. The dependency of G0W0Γ on the starting mean-field solution is frequently more dominant than the magnitude of the vertex correction itself. Consequently, for molecular systems, self-consistent GW performed on the imaginary axis (and then followed by modern analytical continuation techniques) offers a more reliable approach to make predictions of ionization potentials.

16.
J Phys Chem A ; 117(43): 11072-85, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24044623

RESUMO

We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models.

17.
J Chem Phys ; 138(16): 164102, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23635106

RESUMO

We propose a two-step protocol for inverting ultrafast spectroscopy experiments on a molecular aggregate to extract the time-evolution of the excited state density matrix. The first step is a deconvolution of the experimental signal to determine a pump-dependent response function. The second step inverts this response function to obtain the quantum state of the system, given a model for how the system evolves following the probe interaction. We demonstrate this inversion analytically and numerically for a dimer model system, and evaluate the feasibility of scaling it to larger molecular aggregates such as photosynthetic protein-pigment complexes. Our scheme provides a direct alternative to the approach of determining all Hamiltonian parameters and then simulating excited state dynamics.


Assuntos
Teoria Quântica , Análise Espectral
18.
J Phys Chem Lett ; 14(36): 8050-8059, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37652533

RESUMO

We show that for a class of quantum light spectroscopy (QLS) experiments using n = 0, 1, 2, ··· classical light pulses and an entangled photon pair (a biphoton state) where one photon acts as a reference without interacting with the matter sample, identical signals can be obtained by replacing the biphotons with classical-like coherent states of light, where these are defined explicitly in terms of the parameters of the biphoton states. An input-output formulation of quantum nonlinear spectroscopy is used to prove this equivalence. We demonstrate the equivalence numerically by comparing a classical pump-quantum probe experiment with the corresponding classical pump-classical probe experiment. This analysis shows that understanding the equivalence between entangled biphoton probes and carefully designed classical-like coherent state probes leads to quantum-inspired classical experiments that yield equivalent signals and provides insights for the future design of QLS experiments that could provide a true quantum advantage.

19.
Chem Sci ; 14(40): 11213-11227, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37860666

RESUMO

A prominent goal in quantum chemistry is to solve the molecular electronic structure problem for ground state energy with high accuracy. While classical quantum chemistry is a relatively mature field, the accurate and scalable prediction of strongly correlated states found, e.g., in bond breaking and polynuclear transition metal compounds remains an open problem. Within the context of a variational quantum eigensolver, we propose a new family of ansatzes which provides a more physically appropriate description of strongly correlated electrons than a unitary coupled cluster with single and double excitations (qUCCSD), with vastly reduced quantum resource requirements. Specifically, we present a set of local approximations to the unitary cluster Jastrow wavefunction motivated by Hubbard physics. As in the case of qUCCSD, exactly computing the energy scales factorially with system size on classical computers but polynomially on quantum devices. The local unitary cluster Jastrow ansatz removes the need for SWAP gates, can be tailored to arbitrary qubit topologies (e.g., square, hex, and heavy-hex), and is well-suited to take advantage of continuous sets of quantum gates recently realized on superconducting devices with tunable couplers. The proposed family of ansatzes demonstrates that hardware efficiency and physical transparency are not mutually exclusive; indeed, chemical and physical intuition regarding electron correlation can illuminate a useful path towards hardware-friendly quantum circuits.

20.
J Chem Phys ; 137(20): 204110, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23205984

RESUMO

Electronic-vibrational dynamics in molecular systems that interact with an environment involve a large number of degrees of freedom and are therefore often described by means of open quantum system approaches. A popular approach is to include only the electronic degrees of freedom into the system part and to couple these to a non-Markovian bath of harmonic vibrational modes that is characterized by a spectral density. Since this bath represents both intra-molecular and external vibrations, it is important to understand how to construct a spectral density that accounts for intra-molecular vibrational modes that couple further to other modes. Here, we address this problem by explicitly incorporating an intra-molecular vibrational mode together with the electronic degrees of freedom into the system part and using the Fano theory for a resonance coupled to a continuum to derive an "effective" bath spectral density, which describes the contribution of intra-molecular modes. We compare this effective model for the intra-molecular mode with the method of pseudomodes, a widely used approach in simulation of non-Markovian dynamics. We clarify the difference between these two approaches and demonstrate that the respective resulting dynamics and optical spectra can be very different.


Assuntos
Modelos Biológicos , Teoria Quântica , Espectrofotometria Atômica , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA