Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 15(5): 557-63, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26901512

RESUMO

Epitaxial attachment of quantum dots into ordered superlattices enables the synthesis of quasi-two-dimensional materials that theoretically exhibit features such as Dirac cones and topological states, and have major potential for unprecedented optoelectronic devices. Initial studies found that disorder in these structures causes localization of electrons within a few lattice constants, and highlight the critical need for precise structural characterization and systematic assessment of the effects of disorder on transport. Here we fabricated superlattices with the quantum dots registered to within a single atomic bond length (limited by the polydispersity of the quantum dot building blocks), but missing a fraction (20%) of the epitaxial connections. Calculations of the electronic structure including the measured disorder account for the electron localization inferred from transport measurements. The calculations also show that improvement of the epitaxial connections will lead to completely delocalized electrons and may enable the observation of the remarkable properties predicted for these materials.

2.
Nano Lett ; 16(9): 5714-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27540863

RESUMO

Epitaxially connected superlattices of self-assembled colloidal quantum dots present a promising route toward exquisite control of electronic structure through precise hierarchical structuring across multiple length scales. Here, we uncover propagation of disorder as an essential feature in these systems, which intimately connects order at the atomic, superlattice, and grain scales. Accessing theoretically predicted exotic electronic states and highly tunable minibands will therefore require detailed understanding of the subtle interplay between local and long-range structure. To that end, we developed analytical methods to quantitatively characterize the propagating disorder in terms of a real paracrystal model and directly observe the dramatic impact of angstrom scale translational disorder on structural correlations at hundreds of nanometers. Using this framework, we discover improved order accompanies increasing sample thickness and identify the substantial effect of small fractions of missing epitaxial bonds on statistical disorder. These results have significant experimental and theoretical implications for the elusive goals of long-range carrier delocalization and true miniband formation.

3.
Phys Chem Chem Phys ; 16(47): 25729-33, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25017003

RESUMO

We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.

4.
Nano Lett ; 13(7): 3225-31, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23777454

RESUMO

Confined-but-connected quantum dot solids (QDS) combine the advantages of tunable, quantum-confined energy levels with efficient charge transport through enhanced electronic interdot coupling. We report the fabrication of QDS by treating self-assembled films of colloidal PbSe quantum dots with polar nonsolvents. Treatment with dimethylformamide balances the rates of self-assembly and ligand displacement to yield confined-but-connected QDS structures with cubic ordering and quasi-epitaxial interdot connections through facets of neighboring dots. The QDS structure was analyzed by a combination of transmission electron microscopy and wide-angle and small-angle X-ray scattering. Excitonic absorption signatures in optical spectroscopy confirm that quantum confinement is preserved. Transport measurements show significantly enhanced conductivity in treated films.

5.
ACS Nano ; 13(10): 11460-11468, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31502825

RESUMO

Periodic arrays of strongly coupled colloidal quantum dots (QDs) may enable unprecedented control of electronic band structure through manipulation of QD size, shape, composition, spacing, and assembly geometry. This includes the possibilities of precisely engineered bandgaps and charge carrier mobilities, as well as remarkable behaviors such as metal-insulator transitions, massless carriers, and topological states. However, experimental realization of these theoretically predicted electronic structures is presently limited by structural disorder. Here, we use aberration-corrected scanning transmission electron microscopy to precisely quantify the orientational disorder of epitaxially connected QD films. In spite of coherent atomic connectivity between nearest neighbor QDs, we find misalignment persists with a standard deviation of 1.9°, resulting in significant bending strain localized to the adjoining necks. We observe and quantify a range of out-of-plane particle orientations over thousands of QDs and correlate the in-plane and out-of-plane misalignments, finding QDs misoriented out-of-plane display a statistically greater misalignment with respect to their in-plane neighbors as well. Using the bond orientational order metric ψ4, we characterize the 4-fold symmetry and introduce a quantification of the local superlattice (SL) orientation. This enables direct comparison between local orientational order in the SL and atomic lattice (AL). We find significantly larger variations in the SL orientation and a statistically robust but locally highly variable correlation between the orientations of the two differently scaled lattices. Distinct AL and SL behaviors are observed about a grain boundary, with a sharp boundary in the AL orientations, but a more smooth transition in the SL, facilitated by lattice deformation between the neighboring grains. Coupling between the AL and SL is a fundamental driver of film growth, and these results suggest nontrivial underlying mechanics, implying that simplified models of epitaxial attachment may be insufficient to understand QD growth and disorder when oriented attachment and superlattice growth occur in concert.

6.
J Phys Chem Lett ; 8(12): 2623-2628, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28530835

RESUMO

The formation of epitaxially connected quantum dot solids involves a complex interplay of interfacial assembly, surface chemistry, and irreversible-directed attachment. We describe the basic mechanism in the context of a coherent phase transition with distinct nucleation and propagation steps. The proposed mechanism explains how defects in the preassembled structure influence nucleation and how basic geometric relationships govern the transformation from hexagonal assemblies of isolated dots to interconnected solids with square symmetry. We anticipate that new mechanistic insights will guide future advances in the formation of high-fidelity quantum dot solids with enhanced grain size, interconnectivity, and control over polymorph structures.

7.
ACS Nano ; 9(4): 4096-102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25787088

RESUMO

As nanocrystal (NC) synthesis techniques and device architectures advance, it becomes increasingly apparent that new ways of connecting NCs with each other and their external environment are required to realize their considerable potential. Enhancing inter-NC coupling by thermal annealing has been a long-standing challenge. Conventional thermal annealing approaches are limited by the challenge of annealing the NC at sufficiently high temperatures to remove surface-bound ligands while at the same time limiting the thermal budget to prevent large-scale aggregation. Here we investigate nonequilibrium laser annealing of NC thin films that enables separation of the kinetic and thermodynamic aspects of nanocrystal fusion. We show that laser annealing of NC assemblies on nano- to microsecond time scales can transform initially isolated NCs in a thin film into an interconnected structure in which proximate dots "just touch". We investigate both pulsed laser annealing and laser spike annealing and show that both annealing methods can produce "confined-but-connected" nanocrystal films. We develop a thermal transport model to rationalize the differences in resulting film morphologies. Finally we show that the insights gained from study of nanocrystal mono- and bilayers can be extended to three-dimensional NC films. The basic processing-structure-property relationships established in this work provide guidance to future advances in creating functional thin films in which constituent NCs can purposefully interact.


Assuntos
Lasers , Chumbo/química , Nanopartículas/química , Compostos de Selênio/química , Temperatura Alta , Modelos Moleculares , Conformação Molecular
8.
ACS Nano ; 6(11): 9466-74, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23078364

RESUMO

We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.


Assuntos
Nanopartículas/química , Nanopartículas/efeitos da radiação , Campos Eletromagnéticos , Transporte de Elétrons , Luz , Teste de Materiais , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA