Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Horm Behav ; 136: 105084, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34749278

RESUMO

Women are vulnerable to developing mental disorders that are associated with circulating estrogens. Estrogens, especially 17ß-estradiol (E2), have a wide array of effects on the brain, affecting many behavioral endpoints associated with mental illness. By using a total estrogen receptor (ER) α knockout (KO), an ERα knock in/knock out (KIKO) that lacks a functional DNA-binding domain, and wild type (WT) controls treated with either oil or E2, we evaluated ERα signaling, dependent and independent of the estrogen response element (ERE), on avoidance behavior, social interactions and memory, and palatable ingestive behavior using the open field test, the elevated plus maze, the light dark box, the 3-chamber test, and palatable feeding. We found that ERα does not mediate control of anxiety-like behaviors but rather yielded differences in locomotor activity. In evaluating social preference and social recognition memory, we observed that E2 may modulate these measures in KIKO females but not KO females, suggesting that ERE-independent signaling is likely involved in sociability. Lastly, observations of palatable (high-fat) food intake suggested an increase in palatable eating behavior in oil-treated KIKO females. Oil-treated KO females had a longer latency to food intake, indicative of an anhedonic phenotype compared to oil-treated WT and KIKO females. We have observed that social-related behaviors are potentially influenced by ERE-independent ERα signaling and hedonic food intake requires signaling of ERα.


Assuntos
Aprendizagem da Esquiva , Receptor alfa de Estrogênio , Comportamento Alimentar , Interação Social , Animais , Comportamento Animal , Estradiol/farmacologia , Estradiol/fisiologia , Receptor alfa de Estrogênio/genética , Estrogênios/farmacologia , Feminino , Camundongos , Camundongos Knockout , Elementos de Resposta
2.
J Appl Toxicol ; 41(3): 442-457, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33280148

RESUMO

Increased usage of organophosphate flame retardants (OPFRs) has led to detectable levels in pregnant women and neonates, which is associated with negative neurological outcomes. Therefore, we investigated if maternal OPFR exposure altered adult offspring feeding, locomotor, and anxiety-like behaviors on a low-fat (LFD) or high-fat diet (HFD). Wild-type C57Bl/6J dams were orally dosed with vehicle (sesame oil) or an OPFR mixture (1 mg/kg combination each of tris(1,3-dichloro-2-propyl)phosphate, triphenyl phosphate and tricresyl phosphate) from gestation day 7 to postnatal day 14. After weaning, pups were fed either a LFD or HFD until 19 weeks of age. Locomotor and anxiety-like behaviors were evaluated with the open field test, elevated plus maze, and metabolic cages. Feeding behaviors and meal patterns were analyzed by a Biological Data Acquisition System. Anogenital distance was reduced in OPFR-exposed male pups, but no effect was detected on adult body weight. We observed interactions of OPFR exposure and HFD consumption on locomotor and anxiety-like behavior in males, suggesting an anxiogenic effect while reducing overall nighttime activity. We also observed an interaction of OPFR exposure and HFD on weekly food intake and feeding behaviors. OPFR-exposed males consumed more total HFD than oil-exposed males during the 72-hour trial. However, when arcuate gene expression was analyzed, OPFR exposure induced Agrp expression in females, which would suggest greater orexigenic tone. Collectively, the implications of our study are that the behavioral effects of OPFR exposure are modulated by adult HFD consumption, which may influence the metabolic and neurological consequences of maternal OPFR exposure.


Assuntos
Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Retardadores de Chama/toxicidade , Locomoção/efeitos dos fármacos , Exposição Materna/efeitos adversos , Organofosfatos/toxicidade , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Gravidez , Caracteres Sexuais
3.
Horm Behav ; 97: 145-153, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037972

RESUMO

Women are more likely than men to suffer from psychiatric disorders characterized by corticotropin releasing factor (CRF) hypersecretion, suggesting sex differences in CRF sensitivity. In rodents, sex differences in the sensitivity of specific brain regions to CRF have been identified. However, regions do not work in isolation, but rather form circuits to coordinate distinct responses to stressful events. Here we examined whether CRF activates different circuits in male and female rats. Following central administration of CRF or artificial cerebrospinal fluid (aCSF), neuronal activation in stress-related areas was assessed using cFOS. Functional connectivity was gauged by correlating the number of cFOS-positive cells between regions and then identifying differences within each sex in correlations for aCSF-treated and CRF-treated groups. This analysis revealed that CRF altered different circuits in males and females. As an example, CRF altered correlations involving the dorsal raphe in males and the bed nucleus of the stria terminalis in females, suggesting sex differences in stress-activated circuits controlling mood and anxiety. Next, plasma estradiol and progesterone levels were correlated with cFOS counts in females. Negative correlations between estradiol and neuronal activation in the regions within the extended amygdala were found in CRF-treated, but not aCSF-treated females. This result suggests that estrogens and CRF together modulate the fear and anxiety responses mediated by these regions. Collectively, these studies reveal sex differences in the way brain regions work together in response to CRF. These differences could drive different stress coping strategies in males and females, perhaps contributing to sex biases in psychopathology.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Hormônio Liberador da Corticotropina/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Caracteres Sexuais , Tonsila do Cerebelo/metabolismo , Animais , Núcleo Dorsal da Rafe/metabolismo , Estradiol/sangue , Feminino , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/metabolismo , Progesterona/sangue , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
4.
Physiol Behav ; 275: 114431, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072036

RESUMO

Intermittent fasting (IMF) is associated with many health benefits in animals and humans. Yet, little is known if an IMF diet affects mood and cognitive processing. We have previously identified that IMF in diet-induced obese males increases norepinephrine and dopamine content in the hypothalamus and increases arcuate neuropeptide Y (NPY) gene expression more than in ad libitum control males. This suggests that IMF may improve cognition through activation of the hindbrain norepinephrine neuronal network and reverse the age-dependent decline in NPY expression. Less is known about the association between anxiety and IMF. Although, in humans, IMF during Ramadan may alleviate anxiety. Here, we address the impact of IMF on anxiety-like behavior using the open field test, hippocampal-dependent memory using the Y-maze and spatial object recognition, and hippocampal-independent memory using novel object recognition in middle-aged male and female (12 mo) and aged male and female (18 mo) mice. Using ELISA, we determined norepinephrine (NE) content in the dorsal hippocampus (DH) and prefrontal cortex (PFC). We also investigated gene expression in the arcuate nucleus (ARC), the lateral hypothalamus (LH), and the locus coeruleus (LC). In IMF-treated females at both ages, we observed an improvement in spatial navigation although an impairment in spatial object orientation. IMF-treated females (12 mo) had a reduction and IMF-treated males (12 mo) displayed an improvement in novel object recognition memory. IMF-treated females (18 mo) exhibited anxiolytic-like behavior and increased locomotion. In the DH, IMF-treated males (12 mo) had a greater amount of NE content and IMF-treated males (18 mo) had a reduction. In the ARC, IMF-treated males (12 mo) exhibited an increase in Agrp and Npy and a decrease in Adr1a. In the ARC, IMF-treated males (18 mo) exhibited an increase in Npy and a decrease in Adr1a; females had a trending decrease in Cart. In the LH at 12 months, IMF-treated males had a decrease in Npy5r, Adr1a, and Adr1b; both males and females had a reduction in Npy1r. In the LH, IMF-treated females (18 mo) had a decrease in Hcrt. In the LC at both ages, mice largely exhibited sex effects. Our findings indicate that IMF produces alterations in mood, cognition, DH NE content, and ARC, LH, and LC gene expression depending on sex and age.


Assuntos
Jejum Intermitente , Norepinefrina , Humanos , Camundongos , Masculino , Feminino , Animais , Pessoa de Meia-Idade , Idoso , Norepinefrina/metabolismo , Neuropeptídeo Y/metabolismo , Hipotálamo/metabolismo , Hipocampo/metabolismo
5.
Psychoneuroendocrinology ; 161: 106920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128260

RESUMO

Mood disorders, like major depressive disorder, can be precipitated by chronic stress and are more likely to be diagnosed in cisgender women than in cisgender men. This suggests that stress signaling in the brain is sexually dimorphic. We used a chronic variable mild stress paradigm to stress female and male mice for 6 weeks, followed by an assessment of avoidance behavior: the open field test, the elevated plus maze, the light/dark box emergence test, and the novelty suppressed feeding test. Additional cohorts were used for bulk RNA-Sequencing of the anterodorsal bed nucleus of the stria terminalis (adBNST) and whole-cell patch clamp electrophysiology in NPY-expressing neurons of the adBNST to record stress-sensitive M-currents. Our results indicate that females are more affected by chronic stress as indicated by an increase in avoidance behaviors, but that this is also dependent on the estrous stage of the animals such that diestrus females show more avoidant behaviors regardless of stress treatment. Results also indicate that NPY-expressing neurons of the adBNST are not major mediators of chronic stress as the M-current was not affected by treatment. RNA-Sequencing data suggests sex differences in estrogen signaling, serotonin signaling, and orexin signaling in the adBNST. Our results indicate that chronic stress influences behavior in a sex- and estrous stage-dependent manner but NPY-expressing neurons in the BNST are not the mediators of these effects.


Assuntos
Transtorno Depressivo Maior , Núcleos Septais , Humanos , Camundongos , Feminino , Masculino , Animais , Núcleos Septais/fisiologia , Transtorno Depressivo Maior/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , RNA/metabolismo
6.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626144

RESUMO

Obesity, cardiometabolic disease, cognitive decline, and osteoporosis are symptoms of postmenopause, which can be modeled using 4-vinylcyclohexene diepoxide (VCD)-treated mice to induce ovarian failure and estrogen deficiency combined with high-fat diet (HFD) feeding. The trend of replacing saturated fatty acids (SFAs), for example coconut oil, with seed oils that are high in polyunsaturated fatty acids, specifically linoleic acid (LA), may induce inflammation and gut dysbiosis, and worsen symptoms of estrogen deficiency. To investigate this hypothesis, vehicle (Veh)- or VCD-treated C57BL/6J mice were fed a HFD (45% kcal fat) with a high LA:SFA ratio (22.5%: 8%), referred to as the 22.5% LA diet, or a HFD with a low LA:SFA ratio (1%: 31%), referred to as 1% LA diet, for a period of 23 to 25 weeks. Compared with VCD-treated mice fed the 22.5% LA diet, VCD-treated mice fed the 1% LA diet showed lower weight gain and improved glucose tolerance. However, VCD-treated mice fed the 1% LA diet had higher blood pressure and showed evidence of spatial cognitive impairment. Mice fed the 1% LA or 22.5% LA diets showed gut microbial taxa changes that have been associated with a mix of both beneficial and unfavorable cognitive and metabolic phenotypes. Overall, these data suggest that consuming different types of dietary fat from a variety of sources, without overemphasis on any particular type, is the optimal approach for promoting metabolic health regardless of estrogen status.


Assuntos
Gorduras na Dieta , Ácidos Graxos , Camundongos , Feminino , Animais , Óleo de Coco , Camundongos Endogâmicos C57BL , Gorduras na Dieta/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Ácido Linoleico , Homeostase , Cognição , Estrogênios
7.
Biomolecules ; 12(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36291579

RESUMO

The gut peptide, ghrelin, mediates energy homeostasis and reproduction by acting through its receptor, growth hormone secretagogue receptor (GHSR), expressed in hypothalamic neurons in the arcuate (ARC). We have shown 17ß-estradiol (E2) increases Ghsr expression in Kisspeptin/Neurokinin B/Dynorphin (KNDy) neurons, enhancing sensitivity to ghrelin. We hypothesized that E2-induced Ghsr expression augments KNDy sensitivity in a fasting state by elevating ghrelin to disrupt energy expenditure in females. We produced a Kiss1-GHSR knockout to determine the role of GHSR in ARC KNDy neurons. We found that changes in ARC gene expression with estradiol benzoate (EB) treatment were abrogated by the deletion of GHSR and ghrelin abolished these differences. We also observed changes in metabolism and fasting glucose levels. Additionally, knockouts were resistant to body weight gain on a high fat diet (HFD). Behaviorally, we found that knockouts on HFD exhibited reduced anxiety-like behavior. Furthermore, knockouts did not refeed to the same extent as controls after a 24 h fast. Finally, in response to cold stress, knockout females had elevated metabolic parameters compared to controls. These data indicate GHSR in Kiss1 neurons modulate ARC gene expression, metabolism, glucose homeostasis, behavior, and thermoregulation, illustrating a novel mechanism for E2 and ghrelin to control Kiss1 neurons.


Assuntos
Receptores de Grelina , Animais , Feminino , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dinorfinas/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Grelina/metabolismo , Glucose/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores de Grelina/genética
8.
Neurotoxicol Teratol ; 79: 106884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289443

RESUMO

Endocrine-disrupting compounds (EDCs) are common contaminants in our environment that interfere with typical endocrine function. EDCs can act on steroid and nuclear receptors or alter hormone production. One particular EDC of critical concern is bisphenol A (BPA) due to its potential harm during the perinatal period of development. Previous studies suggest that perinatal exposure to BPA alters several neurotransmitter systems and disrupts behaviors associated with depression and anxiety in the rodent offspring later in life. Thus, dysregulation in neurotransmission may translate to behavioral phenotypes observed in mood and arousal. Many of the systems disrupted by BPA also overlap with the stress system, although little evidence exists on the effects of perinatal BPA exposure in relation to stress and behavior. The purpose of this review is to explore studies involved in perinatal BPA exposure and the stress response at neurochemical and behavioral endpoints. Although more research is needed, we suggest that perinatal BPA exposure is likely inducing variations in behavioral phenotypes that modulate their action through dysregulation of neurotransmitter systems sensitive to stress and endocrine disruption.


Assuntos
Ansiedade/induzido quimicamente , Compostos Benzidrílicos/toxicidade , Encéfalo/efeitos dos fármacos , Depressão/induzido quimicamente , Disruptores Endócrinos/toxicidade , Exposição Ambiental , Fenóis/toxicidade , Estresse Psicológico/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Sistema Endócrino/efeitos dos fármacos , Feminino , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
9.
Reprod Toxicol ; 94: 65-74, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32360330

RESUMO

After the phase-out of polybrominated diphenyl ethers, their replacement compounds, organophosphate flame retardants (OPFRs) became ubiquitous in home and work environments. OPFRs, which may act as endocrine disruptors, are detectable in human urine, breast milk, and blood samples collected from pregnant women. However, the effects of perinatal OPFR exposure on offspring homeostasis and gene expression remain largely underexplored. To address this knowledge gap, virgin female mice were mated and dosed with either a sesame oil vehicle or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day (GD) 7 to postnatal day (PND) 14. Hypothalamic and hepatic tissues were collected from one female and one male pup per litter on PND 0 and PND 14. Expression of genes involved in energy homeostasis, reproduction, glucose metabolism, and xenobiotic metabolism were analyzed using quantitative real-time PCR. In the mediobasal hypothalamus, OPFR increased Pdyn, Tac2, Esr1, and Pparg in PND 14 females. In the liver, OPFR increased Pparg and suppressed Insr, G6pc, and Fasn in PND 14 males and increased Esr1, Foxo1, Dgat2, Fasn, and Cyb2b10 in PND 14 females. We also observed striking sex differences in gene expression that were dependent on the age of the pup. Collectively, these data suggest that maternal OPFR exposure alters hypothalamic and hepatic development by influencing neonatal gene expression in a sex-dependent manner. The long-lasting consequences of these changes in expression may disrupt puberty, hormone sensitivity, and metabolism of glucose, fatty acids, and triglycerides in the maturing juvenile.


Assuntos
Retardadores de Chama/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Organofosfatos/toxicidade , Animais , Animais Recém-Nascidos , Feminino , Glucose/metabolismo , Hipotálamo/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Troca Materno-Fetal , Camundongos Endogâmicos C57BL , Gravidez
10.
Neurobiol Stress ; 10: 100150, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30937355

RESUMO

Stress can disrupt memory and contribute to cognitive impairments in psychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder. These diseases are more common in men than in women, with men showing greater cognitive impairments. Mnemonic deficits induced by stress are mediated, in part, by corticotropin releasing factor (CRF). However, where CRF is acting to regulate memory, and sex differences therein, is understudied. Here we assessed whether CRF in the medial septum (MS), which projects to the hippocampus, affected memory formation in male and female rats. CRF in the MS did not alter hippocampal-independent object recognition memory, but impaired hippocampal-dependent object location memory in both sexes. Interestingly, males were more sensitive than females to the disruptive effect of a low dose of CRF in the MS. Female resistance was not due to circulating ovarian hormones. However, compared to males, females had higher MS expression of CRF binding protein, which reduces CRF bioavailability and thus may mitigate the effect of the low dose of CRF in females. In contrast, there was no sex difference in CRF1 expression in the MS. Consistent with this finding, CRF1 antagonism blocked the memory impairment caused by the high dose of CRF in the MS in both sexes. Collectively, these results suggest that males are more vulnerable than females to the memory impairments caused by CRF in the MS. In both sexes, CRF1 antagonists prevented MS-mediated memory deficits caused by high levels of CRF, and such levels can result from very stressful events. Thus, CRF1 antagonists may be a viable option for treating cognitive deficits in stressed individuals with psychiatric disorders.

11.
Hormones (Athens) ; 17(1): 5-13, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29858858

RESUMO

Rates of post-traumatic stress disorder, panic disorder, and major depression are higher in women than in men. Another shared feature of these disorders is that dysregulation of the stress neuropeptide, corticotropin-releasing factor (CRF), is thought to contribute to their pathophysiology. Therefore, sex differences in responses to CRF could contribute to this sex bias in disease prevalence. Here, we review emerging data from non-human animal models that reveal extensive sex differences in CRF functions ranging from its presynaptic regulation to its postsynaptic efficacy. Specifically, detailed are sex differences in the regulation of CRF-containing neurons and the amount of CRF that they produce. We also describe sex differences in CRF receptor expression, distribution, trafficking, and signaling. Finally, we highlight sex differences in the processes that mitigate the effects of CRF. In most cases, the identified sex differences can lead to increased stress sensitivity in females. Thus, the relevance of these differences for the increased risk of depression and anxiety disorders in women compared to men is also discussed.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Caracteres Sexuais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/metabolismo , Animais , Ansiedade/metabolismo , Depressão/metabolismo , Feminino , Humanos , Masculino
12.
Brain Res ; 1641(Pt B): 177-88, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26607253

RESUMO

Women are more likely than men to suffer from post-traumatic stress disorder (PTSD) and major depression. In addition to their sex bias, these disorders share stress as an etiological factor and hyperarousal as a symptom. Thus, sex differences in brain arousal systems and their regulation by stress could help explain increased vulnerability to these disorders in women. Here we review preclinical studies that have identified sex differences in the locus coeruleus (LC)-norepinephrine (NE) arousal system. First, we detail how structural sex differences in the LC can bias females towards increased arousal in response to emotional events. Second, we highlight studies demonstrating that estrogen can increase NE in LC target regions by enhancing the capacity for NE synthesis, while reducing NE degradation, potentially increasing arousal in females. Third, we review data revealing how sex differences in the stress receptor, corticotropin releasing factor 1 (CRF1), can increase LC neuronal sensitivity to CRF in females compared to males. This effect could translate into hyperarousal in women under conditions of CRF hypersecretion that occur in PTSD and depression. The implications of these sex differences for the treatment of stress-related psychiatric disorders are discussed. Moreover, the value of using information regarding biological sex differences to aid in the development of novel pharmacotherapies to better treat men and women with PTSD and depression is also highlighted. This article is part of a Special Issue entitled SI: Noradrenergic System.


Assuntos
Locus Cerúleo/fisiologia , Locus Cerúleo/fisiopatologia , Caracteres Sexuais , Estresse Psicológico/fisiopatologia , Animais , Humanos , Locus Cerúleo/citologia
13.
Psychoneuroendocrinology ; 73: 204-216, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27521739

RESUMO

Hypersecretion of corticotropin releasing factor (CRF) is linked to the pathophysiology of major depression and post-traumatic stress disorder, disorders that are more common in women than men. Notably, preclinical studies have identified sex differences in CRF receptors that can increase neuronal sensitivity to CRF in female compared to male rodents. These cellular sex differences suggest that CRF may regulate brain circuits and behavior differently in males and females. To test this idea, we first evaluated whether there were sex differences in anxiety-related behaviors induced by the central infusion of CRF. High doses of CRF increased self-grooming more in female than in male rats, and the magnitude of this effect in females was greater when they were in the proestrous phase of their estrous cycle (higher ovarian hormones) compared to the diestrous phase (lower ovarian hormones), which suggests that ovarian hormones potentiate this anxiogenic effect of CRF. Brain regions associated with CRF-evoked self-grooming were identified by correlating a marker of neuronal activation, cFOS, with time spent grooming. In the infralimbic region, which is implicated in regulating anxiety, the correlation for CRF-induced neuronal activation and grooming was positive in proestrous females, but negative for males and diestrous females, indicating that ovarian hormones altered this relationship between neuronal activation and behavior. Because CRF regulates a number of regions that work together to coordinate different aspects of responding to stress, we then examined more broadly whether CRF-activated functional connectivity networks differed between males and cycling females. Interestingly, hormonal status altered correlations for CRF-induced neuronal activation between a variety of brain regions, but the most striking differences were found when comparing proestrous females to males, particularly when comparing neuronal activation between prefrontal cortical and other forebrain regions. These results suggest that ovarian hormones alter the way brain regions work together in response to CRF, which could drive different strategies for coping with stress in males versus females. These sex differences in stress responses could also help explain female vulnerability to psychiatric disorders characterized by CRF hypersecretion.


Assuntos
Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Estrogênios/metabolismo , Ciclo Estral/metabolismo , Asseio Animal , Progesterona/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Hormônio Liberador da Corticotropina/administração & dosagem , Feminino , Asseio Animal/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA