Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37298658

RESUMO

In this study, the intrinsic surface-enhanced Raman spectroscopy (SERS)-based approach coupled with chemometric analysis was adopted to establish the biochemical fingerprint of SARS-CoV-2 infected human fluids: saliva and nasopharyngeal swabs. The numerical methods, partial least squares discriminant analysis (PLS-DA) and support vector machine classification (SVMC), facilitated the spectroscopic identification of the viral-specific molecules, molecular changes, and distinct physiological signatures of pathetically altered fluids. Next, we developed the reliable classification model for fast identification and differentiation of negative CoV(-) and positive CoV(+) groups. The PLS-DA calibration model was described by a great statistical value-RMSEC and RMSECV below 0.3 and R2cal at the level of ~0.7 for both type of body fluids. The calculated diagnostic parameters for SVMC and PLS-DA at the stage of preparation of calibration model and classification of external samples simulating real diagnostic conditions evinced high accuracy, sensitivity, and specificity for saliva specimens. Here, we outlined the significant role of neopterin as the biomarker in the prediction of COVID-19 infection from nasopharyngeal swab. We also observed the increased content of nucleic acids of DNA/RNA and proteins such as ferritin as well as specific immunoglobulins. The developed SERS for SARS-CoV-2 approach allows: (i) fast, simple and non-invasive collection of analyzed specimens; (ii) fast response with the time of analysis below 15 min, and (iii) sensitive and reliable SERS-based screening of COVID-19 disease.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Saliva/química , Nasofaringe , RNA Viral/genética , Análise Espectral Raman , Manejo de Espécimes/métodos , Teste para COVID-19
2.
Chemistry ; 28(66): e202202114, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36043489

RESUMO

In this contribution we report the high-resolution NMR structure of a recently identified lanthanide-binding aptamer (LnA). We demonstrate that the rigid lanthanide binding by LnA allows for the measurement of anisotropic paramagnetic NMR restraints which to date remain largely inaccessible for nucleic acids. One type of such restraints - pseudocontact shifts (PCS) induced by four different paramagnetic lanthanides - was extensively used throughout the current structure determination study and the measured PCS turned out to be exceptionally well reproduced by the final aptamer structure. This finding opens the perspective for a broader application of paramagnetic effects in NMR studies of nucleic acids through the transplantation of the binding site found in LnA into other DNA/RNA systems.


Assuntos
Aptâmeros de Nucleotídeos , Elementos da Série dos Lantanídeos , Ácidos Nucleicos , Elementos da Série dos Lantanídeos/química , Modelos Moleculares , Proteínas/química , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
3.
Nat Commun ; 15(1): 4218, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760331

RESUMO

DNAzymes - synthetic enzymes made of DNA - have long attracted attention as RNA-targeting therapeutic agents. Yet, as of now, no DNAzyme-based drug has been approved, partially due to our lacking understanding of their molecular mode of action. In this work we report the solution structure of 8-17 DNAzyme bound to a Zn2+ ion solved through NMR spectroscopy. Surprisingly, it turned out to be very similar to the previously solved Pb2+-bound form (catalytic domain RMSD = 1.28 Å), despite a long-standing literature consensus that Pb2+ recruits a different DNAzyme fold than other metal ion cofactors. Our follow-up NMR investigations in the presence of other ions - Mg2+, Na+, and Pb2+ - suggest that at DNAzyme concentrations used in NMR all these ions induce a similar tertiary fold. Based on these findings, we propose a model for 8-17 DNAzyme interactions with metal ions postulating the existence of only a single catalytically-active structure, yet populated to a different extent depending on the metal ion cofactor. Our results provide structural information on the 8-17 DNAzyme in presence of non-Pb2+ cofactors, including the biologically relevant Mg2+ ion.


Assuntos
DNA Catalítico , Chumbo , Magnésio , Zinco , DNA Catalítico/química , DNA Catalítico/metabolismo , Magnésio/metabolismo , Magnésio/química , Zinco/metabolismo , Zinco/química , Chumbo/química , Chumbo/metabolismo , Conformação de Ácido Nucleico , Domínio Catalítico , Modelos Moleculares , Sódio/metabolismo , Sódio/química , Metais/metabolismo , Metais/química , Espectroscopia de Ressonância Magnética , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA