Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(48): 19460-5, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218582

RESUMO

Host plant shifts of herbivorous insects may be a first step toward sympatric speciation and can create new pests of agriculturally important crops; however, the molecular mechanisms that mediate this process are poorly understood. Certain races of the polyphagous aphid Myzus persicae have recently adapted to feed on tobacco (Myzus persicae nicotianae) and show a reduced sensitivity to the plant alkaloid nicotine and cross-resistance to neonicotinoids a class of synthetic insecticides widely used for control. Here we show constitutive overexpression of a cytochrome P450 (CYP6CY3) allows tobacco-adapted races of M. persicae to efficiently detoxify nicotine and has preadapted them to resist neonicotinoid insecticides. CYP6CY3, is highly overexpressed in M. persicae nicotianae clones from three continents compared with M. persicae s.s. and expression level is significantly correlated with tolerance to nicotine. CYP6CY3 is highly efficient (compared with the primary human nicotine-metabolizing P450) at metabolizing nicotine and neonicotinoids to less toxic metabolites in vitro and generation of transgenic Drosophila expressing CYP6CY3 demonstrate that it confers resistance to both compounds in vivo. Overexpression of CYP6CY3 results from the expansion of a dinucleotide microsatellite in the promoter region and a recent gene amplification, with some aphid clones carrying up to 100 copies. We conclude that the mutations leading to overexpression of CYP6CY3 were a prerequisite for the host shift of M. persicae to tobacco and that gene amplification and microsatellite polymorphism are evolutionary drivers in insect host adaptation.


Assuntos
Adaptação Biológica/genética , Afídeos/enzimologia , Repetições de Dinucleotídeos/genética , Amplificação de Genes/genética , Nicotiana/parasitologia , Polimorfismo Genético/genética , Animais , Afídeos/efeitos dos fármacos , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sequência de Bases , Cromatografia Líquida , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Mutação/genética , Nicotina/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
2.
BMC Evol Biol ; 15: 197, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377220

RESUMO

BACKGROUND: Divergent selection can be a major driver of ecological speciation. In insects of medical importance, understanding the speciation process is both of academic interest and public health importance. In the West Nile virus vector Culex pipiens, intraspecific pipiens and molestus forms vary in ecological and physiological traits. Populations of each form appear to share recent common ancestry but patterns of genetic differentiation across the genome remain unknown. Here, we undertook an AFLP genome scan on samples collected from both sympatric and allopatric populations from Europe and the USA to quantify the extent of genomic differentiation between the two forms. RESULTS: The forms were clearly differentiated but each exhibited major population sub-structuring between continents. Divergence between pipiens and molestus forms from USA was higher than in both inter- and intra-continental comparisons with European samples. The proportion of outlier loci between pipiens and molestus (≈3 %) was low but consistent in both continents, and similar to those observed between sibling species of other mosquito species which exhibit contemporary gene flow. Only two of the outlier loci were shared between inter-form comparisons made within Europe and USA. CONCLUSION: This study supports the molestus and pipiens status as distinct evolutionary entities with low genomic divergence. The low number of shared divergent loci between continents suggests a relatively limited number of genomic regions determining key typological traits likely to be driving incipient speciation and/or adaptation of molestus to anthropogenic habitats.


Assuntos
Culex/classificação , Culex/genética , Animais , Análise por Conglomerados , Ecossistema , Europa (Continente) , Fluxo Gênico , Deriva Genética , Especiação Genética , Insetos Vetores/classificação , Insetos Vetores/genética , Insetos Vetores/virologia , Repetições de Microssatélites , Simpatria , Estados Unidos , Febre do Nilo Ocidental/transmissão
3.
Mol Ecol ; 24(11): 2656-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25865270

RESUMO

Functionally constrained genes are ideal insecticide targets because disruption is often fatal, and resistance mutations are typically costly. Synaptic acetylcholinesterase (AChE) is an essential neurotransmission enzyme targeted by insecticides used increasingly in malaria control. In Anopheles and Culex mosquitoes, a glycine-serine substitution at codon 119 of the Ace-1 gene confers both resistance and fitness costs, especially for 119S/S homozygotes. G119S in Anopheles gambiae from Accra (Ghana) is strongly associated with resistance, and, despite expectations of cost, resistant 119S alleles are increasing significantly in frequency. Sequencing of Accra females detected only a single Ace-1 119S haplotype, whereas 119G diversity was high overall but very low at non-synonymous sites, evidence of strong purifying selection driven by functional constraint. Flanking microsatellites showed reduced diversity, elevated linkage disequilibrium and high differentiation of 119S, relative to 119G homozygotes across up to two megabases of the genome. Yet these signals of selection were inconsistent and sometimes weak tens of kilobases from Ace-1. This unexpected finding is attributable to apparently ubiquitous amplification of 119S alleles as part of a large copy number variant (CNV) far exceeding the size of the Ace-1 gene, whereas 119G alleles were unduplicated. Ace-1 CNV was detectable in archived samples collected when the 119S allele was rare in Ghana. Multicopy amplification of resistant alleles has not been observed previously and is likely to underpin the recent increase in 119S frequency. The large CNV compromised localization of the strong selective sweep around Ace-1, emphasizing the need to integrate CNV analysis into genome scans for selection.


Assuntos
Acetilcolinesterase/genética , Anopheles/genética , Variações do Número de Cópias de DNA , Evolução Molecular , Resistência a Inseticidas/genética , Alelos , Animais , Anopheles/enzimologia , Feminino , Genes de Insetos , Genótipo , Gana , Haplótipos , Desequilíbrio de Ligação , Repetições de Microssatélites , Dados de Sequência Molecular , Análise de Sequência de DNA
4.
Proc Natl Acad Sci U S A ; 109(17): 6614-9, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493253

RESUMO

Insecticide resistance is an ideal model to study the emergence and spread of adaptative variants. In the African malaria mosquito, Anopheles gambiae, this is complemented by a strong public health rationale. In this insect, resistance to pyrethroid and DDT insecticides is strongly associated with the mutations L1014F and L1014S within the para voltage-gated sodium channel (VGSC). Across much of West Africa, 1014F frequency approaches fixation. Here, we document the emergence of a mutation, N1575Y, within the linker between domains III-IV of the VGSC. In data extending over 40 kbp of the VGSC 1575Y occurs on only a single long-range haplotype, also bearing 1014F. The 1014F-1575Y haplotype was found in both M and S molecular forms of An. gambiae in West/Central African sample sites separated by up to 2,000 km. In Burkina Faso M form, 1575Y allele frequency rose significantly from 0.053 to 0.172 between 2008 and 2010. Extended haplotype homozygosity analysis of the wild-type 1575N allele showed rapid decay of linkage disequilibrium (LD), in sharp contrast to the extended LD exhibited by 1575Y. A haplotype with long-range LD and high/increasing frequency is a classical sign of strong positive selection acting on a recent mutant. 1575Y occurs ubiquitously on a 1014F haplotypic background, suggesting that the N1575Y mutation compensates for deleterious fitness effects of 1014F and/or confers additional resistance to insecticides. Haplotypic tests of association suggest the latter: The 1014F-1575Y haplotype confers a significant additive benefit above 1014F-1575N for survival to DDT (M form P = 0.03) and permethrin (S form P = 0.003).


Assuntos
Anopheles/genética , Ativação do Canal Iônico , Mutação , Seleção Genética , Canais de Sódio/fisiologia , Animais , Haplótipos , Homozigoto , Resistência a Inseticidas
5.
Proc Natl Acad Sci U S A ; 109(16): 6147-52, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22460795

RESUMO

In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.


Assuntos
Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Animais , Anopheles/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/metabolismo , DDT/metabolismo , DDT/farmacologia , Feminino , Perfilação da Expressão Gênica , Gana , Humanos , Proteínas de Insetos/metabolismo , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/genética , Insetos Vetores/crescimento & desenvolvimento , Inseticidas/classificação , Inseticidas/metabolismo , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Piretrinas/metabolismo , Piretrinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
PLoS Negl Trop Dis ; 18(1): e0011868, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175836

RESUMO

BACKGROUND: While much progress has been made in the control and elimination of onchocerciasis across Africa, the extent to which vector migration might confound progress towards elimination or result in re-establishment of endemism in areas where transmission has been eliminated remains unclear. In Northern Ethiopia, Metema and Metekel-two foci located near the Sudan border-exhibit continuing transmission. While progress towards elimination has been faster in Metema, there remains a problematic hotspot of transmission. Whether migration from Metekel contributes to this is currently unknown. METHODOLOGY/PRINCIPLE FINDINGS: To assess the role of vector migration from Metekel into Metema, we present a population genomics study of 151 adult female vectors using 47,638 RADseq markers and mtDNA CoI sequencing. From additional cytotaxonomy data we identified a new cytoform in Metema, closely related to S. damnosum s.str, here called the Gondar form. RADseq data strongly indicate the existence of two distinctly differentiated clusters within S. damnosum s.l.: one genotypic cluster found only in Metema, and the second found predominantly in Metekel. Because blackflies from both clusters were found in sympatry (in all four collection sites in Metema), but hybrid genotypes were not detected, there may be reproductive barriers preventing interbreeding. The dominant genotype in Metema was not found in Metekel while the dominant genotype in Metekel was found in Metema, indicating that (at the time of sampling) migration is primarily unidirectional, with flies moving from Metekel to Metema. There was strong differentiation between clusters but little genetic differentiation within clusters, suggesting migration and gene flow of flies within the same genetic cluster are sufficient to prevent genetic divergence between sites. CONCLUSIONS/SIGNIFICANCE: Our results confirm that Metekel and Metema represent different transmission foci, but also indicate a northward movement of vectors between foci that may have epidemiological importance, although its significance requires further study.


Assuntos
Oncocercose , Simuliidae , Animais , Feminino , Oncocercose/epidemiologia , Simuliidae/genética , Etiópia , Insetos Vetores , Cromossomos
7.
Mol Biol Evol ; 29(1): 279-91, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21836185

RESUMO

Anopheles gambiae sensu stricto exists as two often-sympatric races termed the M and S molecular forms, characterized by fixed differences at an X-linked marker. Extreme divergence between M and S forms at pericentromeric "genomic islands" suggested that selection on variants therein could be driving interform divergence in the presence of ongoing gene flow, but recent work has detected much more widespread genomic differentiation. Whether such genomic islands are important in reproductive isolation or represent ancestral differentiation preserved by low recombination is currently unclear. A critical test of these competing hypotheses could be provided by comparing genomic divergence when rates of recent introgression vary. We genotyped 871 single nucleotide polymorphisms (SNPs) in A. gambiae sensu stricto from locations of M and S sympatry and allopatry, encompassing the full range of observed hybridization rates (0-25%). M and S forms were readily partitioned based on genomewide SNP variation in spite of evidence for ongoing introgression that qualitatively reflects hybridization rates. Yet both the level and the heterogeneity of genomic divergence varied markedly in line with levels of introgression. A few genomic regions of differentiation between M and S were common to each sampling location, the most pronounced being two centromere-proximal speciation islands identified previously but with at least one additional region outside of areas expected to exhibit reduced recombination. Our results demonstrate that extreme divergence at genomic islands does not simply represent segregating ancestral polymorphism in regions of low recombination and can be resilient to substantial gene flow. This highlights the potential for islands comprising a relatively small fraction of the genome to play an important role in early-stage speciation when reproductive isolation is limited.


Assuntos
Anopheles/genética , Evolução Molecular , Fluxo Gênico , Especiação Genética , África Subsaariana , Animais , Anopheles/classificação , Feminino , Genes de Insetos , Genômica , Haplótipos , Hibridização Genética , Polimorfismo de Nucleotídeo Único
8.
PLoS One ; 18(8): e0288108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531334

RESUMO

Behaviour has a significant heritable component; however, unpicking the variants of interest in the neural circuits and molecular pathways that underpin these has proven difficult. Here, we present a comprehensive analysis of the relationship between known and new candidate genes from identified pathways and key behaviours for survival in 109 adult rhesus macaques (Macaca mulatta). Eight genes involved in emotion were analysed for variation at a total of nine loci. Genetic data were then correlated with cognitive and observational measures of behaviour associated with wellbeing and survival using MCMC-based Bayesian GLMM in R, to account for relatedness within the macaque population. For four loci the variants genotyped were length polymorphisms (SLC6A4 5-hydroxytryptamine transporter length-polymorphic repeat (5-HTTLPR), SLC6A4 STin polymorphism, Tryptophan 5-hydroxylase 2 (TPH2) and Monoamine oxidase A (MAOA)) whilst for the other five (5-hydroxytryptamine receptor 2A (HTR2A), Dopamine Receptor D4 (DRD4), Oxytocin receptor (OXTR), Arginine vasopressin receptor 1A (AVPR1a), Opioid receptor mu(µ) 1 (OPRM1)) SNPs were analysed. STin genotype, DRD4 haplotype and OXTR haplotype were significantly associated with the cognitive and observational measures of behaviour associated with wellbeing and survival. Genotype for 5-HTTLPR, STin and AVPR1a, and haplotype for HTR2A, DRD4 and OXTR were significantly associated with the duration of behaviours including fear and anxiety. Understanding the biological underpinnings of individual variation in negative emotion (e.g., fear and anxiety), together with their impact on social behaviour (e.g., social attention including vigilance for threat) has application for managing primate populations in the wild and captivity, as well as potential translational application for understanding of the genetic basis of emotions in humans.


Assuntos
Analgésicos Opioides , Serotonina , Animais , Adulto , Humanos , Macaca mulatta/genética , Dopamina , Teorema de Bayes , Genótipo , Polimorfismo de Nucleotídeo Único , Receptores de Ocitocina/genética , Atenção , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
9.
Insect Biochem Mol Biol ; 153: 103896, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587809

RESUMO

In some aphid species, intraspecific variation in body colour is caused by differential carotenoid content: whilst green aphids contain only yellow carotenoids (ß-, γ-, and ß,γ-carotenes), red aphids additionally possess red carotenoids (torulene and 3,4-didehydrolycopene). Unusually, within animals who typically obtain carotenoids from their diet, ancestral horizontal gene transfer of carotenoid biosynthetic genes from fungi (followed by gene duplication), have imbued aphids with the intrinsic gene repertoire necessary to biosynthesise carotenoids. In the pea aphid, Acyrthosiphon pisum a lycopene (phytoene) desaturase gene (Tor) underpins the red/green phenotype, with this locus present in heterozygous form in red individuals but absent in green aphids, resulting in them being unable to convert lycopene into the red compounds 3,4-didehydrolycopene and torulene. The green peach aphid, Myzus persicae, separated from the pea aphid for ≈45MY also exists as distinct colour variable morphs, with both red and green individuals present. Here, we examined genomic data for both red and green morphs of M. persicae and identified an enlarged (compared to A. pisum) repertoire of 16 carotenoid biosynthetic genes (11 carotenoid desaturases and five carotenoid cyclase/synthase genes). From these, we identify the homolog of A. pisum Tor (here called carotene desaturase 2 or CDE-2) and show through 3D modelling that this homolog can accommodate the torulene precursor lycopene and, through RNA knockdown feeding experiments, demonstrate that disabling CDE-2 expression in red M. persicae clones results in green-coloured offspring. Unlike in A. pisum, we show that functional CDE-2 is present in the genomes of both red and green aphids. However, expression differences between the two colour morphs (350-700 fold CDE-2 overexpression in red clones), potentially driven by variants identified in upstream putative regulatory elements, underpin this phenotype. Thus, whilst aphids have a common origin of their carotenoid biosynthetic pathway, two aphid species separated for over 40MY have evolved very different drivers of intraspecific colour variation.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Licopeno/metabolismo , Pigmentação/genética , Carotenoides/metabolismo
10.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38045426

RESUMO

Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and cis-regulatory module sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele specific expression in hybrids of insecticide susceptible and resistant strains, suggesting cis regulation is an important mechanism of gene expression regulation in Anopheles gambiae. The genes showing allele specific expression included a higher proportion of Anopheles specific genes on average younger than genes those with balanced allelic expression.

11.
Genes (Basel) ; 14(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36672754

RESUMO

Two commercially important scallop species of the genus Pecten are found in Europe: the north Atlantic Pecten maximus and the Mediterranean Pecten jacobaeus whose distributions abut at the Almeria-Orán front. Whilst previous studies have quantified genetic divergence between these species, the pattern of differentiation along the Pecten genome is unknown. Here, we mapped RADseq data from 235 P. maximus and 27 P. jacobaeus to a chromosome-level reference genome, finding a heterogeneous landscape of genomic differentiation. Highly divergent genomic regions were identified across 14 chromosomes, while the remaining five showed little differentiation. Demographic and comparative genomics analyses suggest that this pattern resulted from an initial extended period of isolation, which promoted divergence, followed by differential gene flow across the genome during secondary contact. Single nucleotide polymorphisms present within highly divergent genomic regions were located in areas of low recombination and contrasting patterns of LD decay were found between the two species, hinting at the presence of chromosomal inversions in P. jacobaeus. Functional annotations revealed that highly differentiated regions were enriched for immune-related processes and mRNA modification. While future work is necessary to characterize structural differences, this study provides new insights into the speciation genomics of P. maximus and P. jacobaeus.


Assuntos
Genoma , Pectinidae , Animais , Genoma/genética , Genômica/métodos , Pectinidae/genética , Cromossomos/genética , Polimorfismo de Nucleotídeo Único/genética
12.
Malar J ; 10: 110, 2011 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-21535872

RESUMO

BACKGROUND: Malaria vector control by indoor residual spraying was reinitiated in 2006 with DDT in Zambézia province, Mozambique. In 2007, these efforts were strengthened by the President's Malaria Initiative. This manuscript reports on the monitoring and evaluation of this programme as carried out by the Malaria Decision Support Project. METHODS: Mosquitoes were captured daily through a series of 114 window exit traps located at 19 sentinel sites, identified to species and analysed for sporozoites. Anopheles mosquitoes were collected resting indoors and tested for insecticide resistance following the standard WHO protocol. Annual cross sectional household parasite surveys were carried out to monitor the impact of the control programme on prevalence of Plasmodium falciparum in children aged 1 to 15 years. RESULTS: A total of 3,769 and 2,853 Anopheles gambiae s.l. and Anopheles funestus, respectively, were captured from window exit traps throughout the period. In 2010 resistance to the pyrethroids lambda-cyhalothrin and permethrin and the carbamate, bendiocarb was detected in An. funestus. In 2006, the sporozoite rate in An. gambiae s.s. was 4% and this reduced to 1% over 4 rounds of spraying. The sporozoite rate for An. funestus was also reduced from 2% to 0 by 2008. Of the 437 Anopheles arabiensis identified, none were infectious. Overall prevalence of P. falciparum in the sentinel sites fell from 60% to 32% between October 2006 and October 2008. CONCLUSION: Both An. gambiae s.s. and An. funestus were controlled effectively with the DDT-based IRS programme in Zambézia, reducing disease transmission and burden. However, the discovery of pyrethroid resistance in the province and Mozambique's policy change away from DDT to pyrethroids for IRS threatens the gains made here.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Adolescente , Animais , Criança , Pré-Escolar , Estudos Transversais , DDT/farmacologia , Feminino , Humanos , Lactente , Malária Falciparum/diagnóstico , Masculino , Moçambique , Plasmodium falciparum/isolamento & purificação , Prevalência
13.
Mar Genomics ; 53: 100753, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32057717

RESUMO

The beadlet anemone Actinia equina (L.) (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most familiar organisms of the North European intertidal zone. Once considered a single, morphologically variable species across northern Europe, it is now recognised as one member of a variable species complex. Previous studies of distribution, aggression, allozymes and mitochondrial DNA suggest that the diversity in form and colour within A. equina may hide still unrecognised species diversity. To empower further study of A. equina population genetics and systematics, we sequenced (PacBio Sequel) the genome of a single A. equina individual to produce a high-quality genome assembly (contig N50 = 492,607 bp, 1485 contigs, number of protein coding genes = 47,671, 97% BUSCO completeness). There is debate as to whether A. equina reproduces solely asexually, since no reliable, consistent evidence of sexual reproduction has been found. To gain further insight, we examined the genome for evidence of a 'meiotic toolkit' - genes believed to be found consistently in sexually reproducing organisms - and demonstrate that the A. equina genome appears not to have this full complement. Additionally, Smudgeplot analysis, coupled with high haplotype diversity, indicates this genome assembly to be of ambiguous ploidy, suggesting that A. equina may not be diploid. The suggested polyploid nature of this species coupled with the deficiency in meiotic toolkit genes, indicates that further field and laboratory studies of this species is warranted to understand how this species reproduces and what role ploidy may play in speciation within this speciose genus.


Assuntos
Genoma , Meiose , Anêmonas-do-Mar/genética , Animais , Reprodução/genética , País de Gales
14.
BMC Genomics ; 10: 320, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19607710

RESUMO

BACKGROUND: Association mapping approaches are dependent upon discovery and validation of single nucleotide polymorphisms (SNPs). To further association studies in Anopheles gambiae we conducted a major resequencing programme, primarily targeting regions within or close to candidate genes for insecticide resistance. RESULTS: Using two pools of mosquito template DNA we sequenced over 300 kbp across 660 distinct amplicons of the An. gambiae genome. Comparison of SNPs identified from pooled templates with those from individual sequences revealed a very low false positive rate. False negative rates were much higher and mostly resulted from SNPs with a low minor allele frequency. Pooled-template sequencing also provided good estimates of SNP allele frequencies. Allele frequency estimation success, along with false positive and negative call rates, improved significantly when using a qualitative measure of SNP call quality. We identified a total of 7062 polymorphic features comprising 6995 SNPs and 67 indels, with, on average, a SNP every 34 bp; a high rate of polymorphism that is comparable to other studies of mosquitoes. SNPs were significantly more frequent in members of the cytochrome p450 mono-oxygenases and carboxy/cholinesterase gene-families than in glutathione-S-transferases, other detoxification genes, and control genomic regions. Polymorphic sites showed a significantly clustered distribution, but the degree of SNP clustering (independent of SNP frequency) did not vary among gene families, suggesting that clustering of polymorphisms is a general property of the An. gambiae genome. CONCLUSION: The high frequency and clustering of SNPs has important ramifications for the design of high-throughput genotyping assays based on allele specific primer extension or probe hybridisation. We illustrate these issues in the context of the design of Illumina GoldenGate assays.


Assuntos
Anopheles/genética , Genoma de Inseto , Polimorfismo de Nucleotídeo Único , Animais , Frequência do Gene , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA/métodos
15.
Curr Opin Insect Sci ; 27: 89-96, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30025640

RESUMO

Although genetic and genomic tools have greatly furthered our understanding of resistance-associated mutations in molecular target sites of insecticides, the genomic basis of transcriptional regulation of detoxification loci in insect pests and vectors remains relatively unexplored. Recent work using RNAi, reporter assays and comparative genomics are beginning to reveal the molecular architecture of this response, identifying critical transcription factors and their binding sites. Central to this is the insect ortholog of the mammalian transcription factor Nrf2, Cap 'n' Collar isoform-C (CncC) which as a heterodimer with Maf-S regulates the transcription of phase I, II and III detoxification loci in a range of insects, with CncC knockdown or upregulation directly affecting phenotypic resistance. CncC:Maf binds to specific antioxidant response element sequences upstream of detoxification genes to initiate transcription. Recent work is now identifying these binding sites for resistance-associated loci and, coupled with genome sequence data and reporter assays, enabling identification of polymorphisms in the CncC:Maf binding site which regulate the insecticide resistance phenotype.


Assuntos
Elementos de Resposta Antioxidante/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Insetos/genética , Insetos/efeitos dos fármacos , Resistência a Inseticidas/genética , Proteínas Repressoras/genética , Animais , Elementos de Resposta Antioxidante/genética , Inativação Metabólica , Proteínas de Insetos/metabolismo , Insetos/genética , Inseticidas/farmacologia , Proteínas Repressoras/metabolismo
16.
Sci Rep ; 8(1): 2920, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440767

RESUMO

Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype.


Assuntos
Anopheles/genética , Genes de Insetos/genética , Marcadores Genéticos/genética , Variação Genética , Estudo de Associação Genômica Ampla , Animais , Feminino , Resistência a Inseticidas/genética , Masculino , Fenótipo
17.
Environ Mol Mutagen ; 48(1): 48-57, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17177211

RESUMO

Sixteen candidate polymorphisms (13 SNPs and 3 microsatellites) in nine genes from four DNA repair pathways were examined in 83 subjects, comprising 23 survivors of childhood cancer, their 23 partners, and 37 offspring, all of whom had previously been studied for G(2) chromosomal radiosensitivity. Genotype at the Asp148Glu SNP site in the APEX gene of the base excision repair (BER) pathway was associated with childhood cancer in survivors (P = 0.001, significant even after multiple test adjustment), due to the enhanced frequency of the APEX Asp148 allele among survivors in comparison to that of their partners. Analysis of variance (ANOVA) of G(2) radiosensitivity in the pooled sample, as well as family-based association test (FBAT) of the family-wise data, showed sporadic suggestions of associations between G(2) radiosensitivity and polymorphisms at two sites (the Thr241Met SNP site in the XRCC3 gene of the homologous recombinational pathway by ANOVA, and the Ser326Cys site in the hOGG1 gene of the BER pathway by FBAT analysis), but neither of these remained significant after multiple-test adjustment. This pilot study provides an intriguing indication that DNA repair gene polymorphisms may underlie cancer susceptibility and variation in radiosensitivity.


Assuntos
Reparo do DNA/genética , Predisposição Genética para Doença , Neoplasias/genética , Polimorfismo Genético , Tolerância a Radiação/genética , Adolescente , Adulto , Alelos , Análise de Variância , Criança , DNA Glicosilases/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/genética , Feminino , Fase G2 , Frequência do Gene , Genótipo , Haplótipos , Humanos , Masculino , Repetições de Microssatélites/genética , Repetições de Microssatélites/fisiologia , Mutação , Polimorfismo de Nucleotídeo Único
18.
Malar J ; 6: 155, 2007 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-18034887

RESUMO

BACKGROUND: The Anopheles gambiae sensu lato species complex comprises seven sibling species of mosquitoes that are morphologically indistinguishable. Rapid identification of the two main species which vector malaria, Anopheles arabiensis and An. gambiae sensu stricto, from the non-vector species Anopheles quadriannulatus is often required as part of vector control programmes. Currently the most widely used method for species identification is a multiplex PCR protocol that targets species specific differences in ribosomal DNA sequences. While this assay has proved to be reasonably robust in many studies, additional steps are required post-PCR making it time consuming. Recently, a high-throughput assay based on TaqMan single nucleotide polymorphism genotyping that detects and discriminates An. gambiae s.s and An. arabiensis has been reported. METHODS: A new TaqMan assay was developed that distinguishes between the main malaria vectors (An. arabiensis and An. gambiae s.s.) and the non-vector An. quadriannulatus after it was found that the existing TaqMan assay incorrectly identified An. quadriannulatus, An. merus and An. melas as An. gambiae s.s. The performance of this new TaqMan assay was compared against the existing TaqMan assay and the standard PCR method in a blind species identification trial of over 450 samples using field collected specimens from a total of 13 countries in Sub-Saharan Africa. RESULTS: The standard PCR method was found to be specific with a low number of incorrect scores (<1%), however when compared to the TaqMan assays it showed a significantly higher number of failed reactions (15%). Both the new vector-specific TaqMan assay and the exisiting TaqMan showed a very low number of incorrectly identified samples (0 and 0.54%) and failed reactions (1.25% and 2.96%). In tests of analytical sensitivity the new TaqMan assay showed a very low detection threshold and can consequently be used on a single leg from a fresh or silica-dried mosquito without the need to first extract DNA. CONCLUSION: This study describes a rapid and sensitive assay that very effectively identifies the two main malaria vectors of the An. gambiae species complex from the non-vector sibling species. The method is based on TaqMan SNP genotyping and can be used to screen single legs from dried specimens. In regions where An. merus/melas/bwambae, vectors with restricted distributions, are not present it can be used alone to discriminate vector from non-vector or in combination with the Walker TaqMan assay to distinguish An. arabiensis and An. gambiae s.s.


Assuntos
Anopheles/classificação , Insetos Vetores/genética , Reação em Cadeia da Polimerase/métodos , Taq Polimerase/genética , Animais , Anopheles/genética , Insetos Vetores/efeitos dos fármacos , Sensibilidade e Especificidade
19.
Evolution ; 60(2): 268-78, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16610319

RESUMO

Steep environmental gradients offer important opportunities to study the interaction between natural selection and gene flow. Allele frequency clines are expected to form at loci under selection, but unlinked neutral alleles may pass easily across these clines unless a generalized barrier evolves. Here we consider the distribution of forms of the intertidal gastropod Littorina saxatilis, analyzing shell shape and amplified fragment length polymorphism (AFLP) loci on two rocky shores in Britain. On the basis of previous work, the AFLP loci were divided into differentiated and undifferentiated groups. On both shores, we have shown a sharp cline in allele frequencies between the two morphs for differentiated AFLP loci. This is coincident with a habitat transition on the shore where the two habitats (cliff and boulder field) are immediately contiguous. The allele frequency clines coincide with a cline in shell morphology. In the middle of the cline, linkage disequilibrium for the differentiated loci rises in accordance with expectation. The clines are extremely narrow relative to dispersal, probably as a result of both strong selection and habitat choice. An increase in F(ST) for undifferentiated AFLPs between morphs, relative to within-morph comparisons, is consistent with there being a general barrier to gene flow across the contact zone. These features are consistent either with an episode of allopatric divergence followed by secondary contact or with primary, nonallopatric divergence. Further data will be needed to distinguish between these alternatives.


Assuntos
Aclimatação/genética , Ecossistema , Fluxo Gênico/genética , Caramujos/genética , Animais , Frequência do Gene , Variação Genética , Geografia , Desequilíbrio de Ligação , Fenótipo , Seleção Genética , Caramujos/anatomia & histologia
20.
Radiat Res ; 165(2): 202-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16435918

RESUMO

Mutations in a 443-bp amplicon of the hypervariable region HVR1 of the D-loop of mitochondrial DNA (mtDNA) were quantified in DNA extracted from peripheral blood samples of 10 retired radiation workers who had accumulated external radiation doses of >0.9 Sv over the course of their working life and were compared to the levels of mutations in 10 control individuals matched for age and smoking status. The mutation rate in the 10 exposed individuals was 9.92 x 10(-5) mutations/ nucleotide, and for the controls it was 8.65 x 10(-5) mutations/ nucleotide, with a procedural error rate of 2.65 x 10(-5) mutations/nucleotide. No increase in mtDNA mutations due to radiation exposure was detectable (P = 0.640). In contrast, chromosomal translocation frequencies, a validated radiobiological technique for retrospective dosimetric purposes, were significantly elevated in the exposed individuals. This suggests that mutations identified through sequencing of mtDNA in peripheral blood lymphocytes do not represent a promising genetic marker of DNA damage after low-dose or low-dose-rate exposures to ionizing radiation. There was an increase in singleton mutations above that attributable to procedural error in both exposed and control groups that is likely to reflect age-related somatic mutation.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/efeitos da radiação , Exposição Ocupacional/efeitos adversos , Centrais Elétricas , Medição de Risco/métodos , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Humanos , Masculino , Energia Nuclear , Radiação Ionizante , Estudos Retrospectivos , Fatores de Risco , Alinhamento de Sequência , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA