Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neural Plast ; 2022: 3889300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283994

RESUMO

Ischemic stroke and traumatic brain injury (TBI) are among the leading causes of death and disability worldwide with impairments ranging from mild to severe. Many therapies are aimed at improving functional and cognitive recovery by targeting neural repair but have encountered issues involving efficacy and drug delivery. As a result, therapeutic options for patients are sparse. Neurotrophic factors are one of the key mediators of neural plasticity and functional recovery. Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) serve as potential therapeutic options to increase neural repair and recovery as they promote neuroprotection and regeneration. BDNF and NGF have demonstrated the ability to improve functional recovery in preclinical and to a lesser extent clinical studies. Direct and indirect methods to increase levels of neurotrophic factors in animal models have been successful in improving postinjury outcome measures. However, the translation of these studies into clinical trials has been limited. Preclinical experiments have largely failed to result in significant impacts in clinical research. This review will focus on the administration of these neurotrophic factors in preclinical and clinical stroke and TBI and the challenges in translating these therapies from the bench to the clinic.


Assuntos
Lesões Encefálicas Traumáticas , Fator Neurotrófico Derivado do Encéfalo , Fator de Crescimento Neural , Animais , Lesões Encefálicas Traumáticas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Humanos , Fator de Crescimento Neural/uso terapêutico , Recuperação de Função Fisiológica
2.
Bioconjug Chem ; 29(12): 3937-3966, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30265523

RESUMO

Passive immunotherapy, i.e., the administration of exogenous antibodies that recognize a specific target antigen, has gained significant momentum as a potential treatment strategy for several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain cancer, among others. Advances in antibody engineering to create therapeutic antibody fragments or antibody conjugates have introduced new strategies that may also be applied to treat CNS disorders. However, drug delivery to the CNS for antibodies and other macromolecules has thus far proven challenging, due in large part to the blood-brain barrier and blood-cerebrospinal fluid barriers that greatly restrict transport of peripherally administered molecules from the systemic circulation into the CNS. Here, we summarize the various passive immunotherapy approaches under study for the treatment of CNS disorders, with a primary focus on disease-specific and target site-specific challenges to drug delivery and new, cutting edge methods.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Sistemas de Liberação de Medicamentos/métodos , Imunização Passiva/métodos , Humanos
3.
J Pharmacol Exp Ther ; 356(2): 251-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26604245

RESUMO

Small molecule inhibitors targeting the mitogen-activated protein kinase pathway (Braf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) have had success in extending survival for patients with metastatic melanoma. Unfortunately, resistance may occur via cross-activation of alternate signaling pathways. One approach to overcome resistance is to simultaneously target the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. Recent reports have shown that GSK2126458 [2,4-difluoro-N-(2-methoxy-5-(4-(pyridazin-4-yl)quinolin-6-yl)pyridin-3-yl) benzenesulfonamide], a dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor, can overcome acquired resistance to Braf and mitogen-activated protein kinase kinase inhibitors in vitro. These resistance mechanisms may be especially important in melanoma brain metastases because of limited drug delivery across the blood-brain barrier. The purpose of this study was to investigate factors that influence the brain distribution of GSK2126458 and to examine the efficacy of GSK2126458 in a novel patient-derived melanoma xenograft (PDX) model. Both in vitro and in vivo studies indicate that GSK2126458 is a substrate for P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), two dominant active efflux transporters in the blood-brain barrier. The steady-state brain distribution of GSK2126458 was 8-fold higher in the P-gp/Bcrp knockout mice compared with the wild type. We also observed that when simultaneously infused to steady state, GSK212658, dabrafenib, and trametinib, a rational combination to overcome mitogen-activated protein kinase inhibitor resistance, all had limited brain distribution. Coadministration of elacridar, a P-gp/Bcrp inhibitor, increased the brain distribution of GSK2126458 by approximately 7-fold in wild-type mice. In the PDX model, GSK2126458 showed efficacy in flank tumors but was ineffective in intracranial melanoma. These results show that P-gp and Bcrp are involved in limiting the brain distribution of GSK2126458 and provide a rationale for the lack of efficacy of GSK2126458 in the orthotopic PDX model.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Melanoma/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/metabolismo , Sulfonamidas/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Cães , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Células Madin Darby de Rim Canino , Masculino , Melanoma/tratamento farmacológico , Camundongos , Camundongos Knockout , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Piridazinas , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
4.
Diab Vasc Dis Res ; 19(4): 14791641221118626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35975361

RESUMO

Insulin receptors are internalized by endothelial cells to facilitate their physiological processes; however, the impact of hyperinsulinemia in brain endothelial cells is not known. Thus, the aim of this study was to elucidate the impact hyperinsulinemia plays on insulin receptor internalization through changes in phosphorylation, as well as the potential impact of protein tyrosine phosphatase 1B (PTP1B). Hippocampal microvessels were isolated from high-fat diet fed mice and assessed for insulin signaling activation, a process known to be involved with receptor internalization. Surface insulin receptors in brain microvascular endothelial cells were labelled to assess the role hyperinsulinemia plays on receptor internalization in response to stimulation, with and without the PTP1B antagonist, Claramine. Our results indicated that insulin receptor levels increased in tandem with decreased receptor signaling in the high-fat diet mouse microvessels. Insulin receptors of cells subjected to hyperinsulinemic treatment demonstrate splice variation towards decreased IR-A mRNA expression and demonstrate a higher membrane-localized proportion. This corresponded with decreased autophosphorylation at sites critical for receptor internalization and signaling. Claramine restored signaling and receptor internalization in cells treated with hyperinsulinemia. In conclusion, hyperinsulinemia impacts brain microvascular endothelial cell insulin receptor signaling and internalization, likely via alternative splicing and increased negative feedback from PTP1B.


Assuntos
Hiperinsulinismo , Receptor de Insulina , Animais , Encéfalo , Células Endoteliais/metabolismo , Insulina/metabolismo , Camundongos , Fosforilação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA