Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Neurosci ; 23(4): 321-334, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30032721

RESUMO

A high-fat diet induces hypothalamic inflammation in rodents which, in turn, contributes to the development of obesity by eliciting both insulin and leptin resistance. However, the mechanism by which long-chain saturated fatty acids trigger inflammation is still contentious. To elucidate this mechanism, the effect of fatty acids on the expression of the pro-inflammatory cytokines IL-6 and TNFα was investigated in the mHypoE-N42 hypothalamic cell line (N42). N42 cells were treated with lauric acid (LA) and palmitic acid (PA). PA challenge was carried out in the presence of either a TLR4 inhibitor, a ceramide synthesis inhibitor (L-cycloserine), oleic acid (OA) or eicosapentaenoic acid (EPA). Intracellular ceramide accumulation was quantified using LC-ESI-MS/MS. PA but not LA upregulated IL-6 and TNFα. L-cycloserine, OA and EPA all counteracted PA-induced intracellular ceramide accumulation leading to a downregulation of IL-6 and TNFα. However, a TLR4 inhibitor failed to inhibit PA-induced upregulation of pro-inflammatory cytokines.In conclusion, PA induced the expression of IL-6 and TNFα in N42 neuronal cells independently of TLR4 but, partially, via ceramide synthesis with OA and EPA being anti-inflammatory by decreasing PA-induced intracellular ceramide build-up. Thus, ceramide accumulation represents one on the mechanisms by which PA induces inflammation in neurons.


Assuntos
Ceramidas/biossíntese , Encefalite/metabolismo , Hipotálamo/metabolismo , Ácido Palmítico/administração & dosagem , Ácido Palmítico/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Encefalite/induzido quimicamente , Hipotálamo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley
2.
Am J Physiol Endocrinol Metab ; 305(7): E834-44, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23921145

RESUMO

Emerging evidence has demonstrated that saturated fatty acids prime pro-IL-1ß production and inflammasome-mediated IL-1ß activation is critical in obesity-associated insulin resistance (IR). Nonetheless, IL-1 receptor I-deficient (IL-1RI(-/-)) mice develop mature-onset obesity despite consuming a low-fat diet (LFD). With this apparent contradiction, the present study evaluated whether IL-1RI(-/-) mice were protected against long-term (6 mo) high-fat diet (HFD)-induced IR. Male wild-type and IL-1RI(-/-) mice were fed LFD or HFD for 3 or 6 mo, and glucose and insulin tolerance tests were performed. Adipose insulin sensitivity, cytokine profiles, and adipocyte morphology were assessed. The adipogenic potential of stromal vascular fraction was determined. Hepatic lipid accumulation and insulin sensitivity were characterized. IL-1RI(-/-) mice developed glucose intolerance and IR after 6 mo HFD compared with 3 mo HFD, coincident with enhanced weight gain, hyperinsulinemia, and hyperleptinemia. The aggravated IR phenotype was associated with loss of adipose functionality, switch from adipocyte hyperplasia to hypertrophy and hepatosteatosis. Induction of adipogenic genes was reduced in IL-1RI(-/-) preadipocytes after 6 mo HFD compared with 3 mo HFD. Obese LFD-IL-1RI(-/-) mice exhibited preserved metabolic health. IL-1RI(-/-) mice develop glucose intolerance and IR after 6 mo HFD intervention. While mature-onset obesity is evident in LFD-IL-1RI(-/-) mice, the additional metabolic insult of HFD was required to drive adipose inflammation and systemic IR. These findings indicate an important interaction between dietary fat and IL-1, relevant to optimal metabolic health.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/etiologia , Resistência à Insulina/fisiologia , Receptores Tipo I de Interleucina-1/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Gorduras na Dieta/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Inflamação/genética , Inflamação/metabolismo , Insulina/sangue , Insulina/farmacologia , Leptina/sangue , Masculino , Camundongos , Camundongos Knockout , Receptores Tipo I de Interleucina-1/genética
3.
Dig Dis Sci ; 57(7): 1866-74, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22373862

RESUMO

BACKGROUND: Obesity is associated with an increased risk of colon cancer. High-fat diets that lead to obesity may be a contributing factor, but the mechanisms are unknown. AIMS: This study examines susceptibility to azoxymethane (AOM)-induced precancerous lesions in mice in response to consumption of either a low or a high-fat diet and associated molecular changes in the liver and colon. METHODS: Gene markers of xenobiotic metabolism, leptin-regulated inflammatory cytokines and proliferation were assessed in liver and colon in response to high-fat feeding to determine links with increased sensitivity to AOM. RESULTS: High-fat feeding increased development of AOM-induced precancerous lesions and was associated with increased CYP2E1 gene expression in the liver, but not the colon. Leptin receptors and the colon stem cell marker (Lgr5) were down-regulated in the proximal colon, with a corresponding up-regulation of the inflammatory cytokine (IL6) in response to high-fat feeding. Notably in the distal colon, where aberrant crypt foci develop in response to AOM, the proliferative stem cell marker, Lgr5, was significantly up-regulated with high-fat feeding. CONCLUSIONS: The current study provides evidence that high-fat diets can alter regulation of molecular markers of xenobiotic metabolism that may expose the colon to carcinogens, in parallel with activation of ß-catenin-regulated targets regulating colon epithelial cells. High-fat diets associated with obesity may alter multiple molecular factors that act synergistically to increase the risk of colon cancer associated with obesity.


Assuntos
Focos de Criptas Aberrantes/etiologia , Colo/metabolismo , Neoplasias Colorretais/etiologia , Dieta Hiperlipídica , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Focos de Criptas Aberrantes/epidemiologia , Focos de Criptas Aberrantes/patologia , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/patologia , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Incidência , Leptina/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
4.
J Cell Physiol ; 226(8): 2123-30, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21520064

RESUMO

Dysregulation of leptin associated with obesity is implicated in obesity-related colon cancer, but mechanisms are elusive. Increased adiposity and elevated plasma leptin are associated with perturbed metabolism in colon and leptin receptors are expressed on colon epithelium. We hypothesise that obesity increases the sensitivity of the colon to cancer by disrupting leptin-regulated gene targets within colon tissues. PCR arrays were used to firstly identify leptin responsive genes and secondly to identify responses to leptin challenge in wild-type mice, or those lacking leptin (ob/ob). Leptin-regulated genes were localised in the colon using in situ hybridisation. IL6, IL1ß and CXCL1 were up-regulated by leptin and localised to discrete cells in gut epithelium, lamina propria, muscularis and at the peritoneal serosal surface. Leptin regulates pro-inflammatory genes such as IL6, IL1ß and CXCL1, and might increase the risk of colon cancer among obese individuals.


Assuntos
Colo/efeitos dos fármacos , Colo/metabolismo , Citocinas/biossíntese , Inflamação/metabolismo , Leptina/fisiologia , Animais , Quimiocina CXCL1/biossíntese , Colo/citologia , Citocinas/efeitos dos fármacos , Expressão Gênica , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Leptina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Regulação para Cima
5.
Dig Dis Sci ; 56(4): 1028-36, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20824498

RESUMO

BACKGROUND: Elevated leptin levels in obesity are associated with increased risk of colon pathology, implicating leptin signaling in colon disease. However, leptin-regulated processes in the colon are currently uncharacterized. Previously, we demonstrated that leptin receptors are expressed on colon epithelium and that increased adiposity and elevated plasma leptin in rats are associated with perturbed metabolism in colon tissue. Thus, we hypothesize that obesity disrupts expression of proteins regulated by leptin in the colon. METHODS: A proteomic analysis was conducted to investigate firstly, differences in the colon of mice lacking leptin and leptin signaling (ob/ob and db/db, respectively) by comparing protein expression profiles with wild-type mice. Secondly, responses to leptin challenge in wild-type mice and ob/ob mice were compared to identify leptin-regulated proteins and associated cellular processes. RESULTS: Forty proteins were identified with significantly altered expression patterns associated with differences in leptin status in comparisons between all groups of mice. These proteins are associated with calcium binding, cell cycle, cell proliferation, electron transport chain, energy metabolism, protein folding and transport, redox regulation, structural proteins, and proteins involved in transport and regulation of mucus production. CONCLUSIONS: This study provides evidence that obesity and leptin significantly alter protein profiles of a number of proteins linked to cellular processes in colon tissues that may be linked to the increased risk of colon pathology associated with obesity.


Assuntos
Colo/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Animais , Colo/efeitos dos fármacos , Perfilação da Expressão Gênica , Leptina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Receptores para Leptina/metabolismo
6.
Mol Nutr Food Res ; 65(1): e1900934, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32246887

RESUMO

Advanced glycation end products (AGEs) are a heterogeneous group of molecules produced, non-enzymatically, from the interaction between reducing sugars and the free amino groups of proteins, nucleic acids, and lipids. AGEs are formed as a normal consequence of metabolism but can also be absorbed from the diet. They have been widely implicated in the complications of diabetes affecting cardiovascular health, the nervous system, eyes, and kidneys. Increased levels of AGEs are also detrimental to metabolic health and may contribute to the metabolic abnormalities induced by the Western diet, which is high in processed foods and represents a significant source of AGEs. While increased AGE levels are a consequence of diabetic hyperglycaemia, AGEs themselves activate signaling pathways, which compromise insulin signaling and pancreatic ß-cell function, thus, contributing to the development of type 2 diabetes mellitus (T2DM). Furthermore, AGEs may also contribute to the obesogenic effects of the Western diet by promoting hypothalamic inflammation and disrupting the central control of energy balance. Here, the role of dietary AGEs in metabolic dysfunction is reviewed with a focus on the mechanisms underpinning their detrimental role in insulin resistance, pancreatic ß-cell dysfunction, hypothalamic control of energy balance, and the pathogenesis of T2DM and obesity.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Enzimas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Obesidade/metabolismo , Antígenos de Neoplasias/metabolismo , Culinária , Dieta , Dieta Ocidental/efeitos adversos , Humanos , Inflamação/etiologia , Células Secretoras de Insulina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Obesidade/etiologia
7.
Nutr Rev ; 78(4): 261-277, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532491

RESUMO

Diet-induced hypothalamic inflammation, which leads to hypothalamic dysfunction and a loss of regulation of energy balance, is emerging as a potential driver of obesity. Excessive intake of long-chain saturated fatty acids is held to be the causative dietary component in hypothalamic inflammation. This review summarizes current evidence on the role of long-chain saturated fatty acids in promoting hypothalamic inflammation and the related induction of central insulin and leptin insensitivity. Particularly, the present review focuses on the molecular mechanisms linking long-chain saturated fatty acids and hypothalamic inflammation, emphasizing the metabolic fate of fatty acids and the resulting lipotoxicity, which is a key driver of hypothalamic dysfunction. In conclusion, long-chain saturated fatty acids are key nutrients that promote hypothalamic inflammation and dysfunction by fostering the build-up of lipotoxic lipid species, such as ceramide. Furthermore, when long-chain saturated fatty acids are consumed in combination with high levels of refined carbohydrates, the proinflammatory effects are exacerbated via a mechanism that relies on the formation of advanced glycation end products.


Assuntos
Gorduras na Dieta , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético , Humanos , Insulina/metabolismo , Resistência à Insulina , Leptina/metabolismo
8.
BMJ Open Sci ; 4(1): e100108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35047694

RESUMO

INTRODUCTION AND OBJECTIVE: The Western diet that comprises high levels of long-chain saturated fats and sugar is associated not only with metabolic disorders such as obesity and type 2 diabetes but also has been recently linked to brain changes and cognitive dysfunction. However, in animal studies, reported effects are variable, and the mechanisms underlying these effects are unclear. In the proposed review, we aim to summarise the diverse evidence of the effects of so-called 'high-fat' and ketogenic diets on behavioural measures of cognition in postweaning mice and rats, relative to animals on standard diets and to determine potential underlying mechanisms of high-fat diet-induced effects. SEARCH STRATEGY: A comprehensive search strategy was designed to retrieve studies reporting use of a high-fat or ketogenic diet in postweaning mice and rats that included cognitive assessments. Three databases (Medline, SCOPUS and Web of Science) were searched and 4487 unique references were retrieved. SCREENING AND ANNOTATION: Studies were screened for inclusion by two independent reviewers, with 330 studies retained for analysis. Characteristics of disease model choice, experimental design, intervention use and outcome assessment are to be extracted using the Systematic Review Facility (http://syrf.org.uk/) tool. Studies will be assessed for study quality and risk of bias and confidence of mechanistic involvement. DATA MANAGEMENT AND REPORTING: For cognitive outcomes, effect sizes will be calculated using normalised mean difference and summarised using a random effects model. The contribution of potential sources of heterogeneity to the observed effects of diet on cognition will be assessed using multivariable meta-regression, with partitioning of heterogeneity as a sensitivity analysis. A preliminary version of this protocol was published on 9 April 2019 on the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies website (http://www.dcn.ed.ac.uk/camarades/research.html%23protocols). ETHICS AND DISSEMINATION: No ethical approval is required as there are no subjects in the proposed study.

9.
J Physiol ; 587(Pt 14): 3573-85, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19491239

RESUMO

Hormone potency depends on receptor availability, regulated via gene expression and receptor trafficking. To ascertain how central leptin receptors are regulated, the effects of leptin challenge, high-fat diet, fasting and refeeding were measured on leptin receptor number and gene expression. These were measured using quantitative (125)I-labelled leptin in vitro autoradiography and in situ hybridisation, respectively. Ob-R (all forms of leptin receptor) expression in the choroid plexus (CP) was unchanged by high-fat diet or leptin challenge, whereas fasting increased but refeeding failed to decrease expression. (125)I-labelled leptin binding to the CP was increased by fasting and returned to basal levels on refeeding. (125)I-Labelled leptin was reduced by leptin challenge and increased by high-fat feeding. Ob-Rb (signalling form) in the arcuate (ARC) and ventromedial (VMH) nuclei was increased after fasting and decreased by refeeding. Leptin challenge increased Ob-Rb expression in the ARC, but not after high-fat feeding. In general, changes in gene expression in the ARC and VMH appeared to be largely due to changes in area rather than density of labelling, indicating that the number of cells expressing Ob-Rb was the parameter that contributed most to these changes. Leptin stimulation of suppressor of cytokine signalling 3 (SOCS3), a marker of stimulation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway, was unchanged after high-fat diet. Thus, early loss of leptin sensitivity after high-fat feeding is unrelated to down-regulation of leptin receptor expression or number and does not involve the JAK/STAT pathway. The effect of leptin to decrease (125)I-labelled leptin binding and the loss of ability of leptin to up-regulate Ob-Rb expression in the ARC after high-fat feeding offer potential mechanisms for the development of leptin insensitivity in response to both hyperleptinaemia and high-fat diet.


Assuntos
Encéfalo/metabolismo , Gorduras na Dieta/metabolismo , Regulação da Expressão Gênica/fisiologia , Leptina/metabolismo , Estado Nutricional , Receptores para Leptina/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual
10.
Nutr Metab (Lond) ; 16: 57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31462902

RESUMO

BACKGROUND: The rise in global obesity makes it crucial to understand how diet drives obesity-related health conditions, such as premature cognitive decline and Alzheimer's disease (AD). In AD hippocampal-dependent episodic memory is one of the first types of memory to be impaired. Previous studies have shown that in mice fed a high-fat diet (HFD) episodic memory is rapidly but reversibly impaired. METHODS: In this study we use hippocampal proteomics to investigate the effects of HFD in the hippocampus. Mice were fed either a low-fat diet (LFD) or HFD containing either 10% or 60% (Kcal) from fat for 3 days, 1 week or 2 weeks. One group of mice were fed the HFD for 1 week and then returned to the LFD for a further week. Primary hippocampal cultures were challenged with palmitic acid (PA), the most common long-chain saturated FA in the Western diet, and with the anti-inflammatory, n-3 polyunsaturated FA, docosahexaenoic acid (DHA), or a combination of the two to ascertain effects of these fatty acids on dendritic structure. RESULTS: HFD-induced changes occur in hippocampal proteins involved in metabolism, inflammation, cell stress, cell signalling, and the cytoskeleton after 3 days, 1 week and 2 weeks of HFD. Replacement of the HFD after 1 week by a low-fat diet (LFD) for a further week resulted in partial recovery of the hippocampal proteome. Microtubule-associated protein 2 (MAP2), one of the earliest proteins changed, was used to investigate the impact of fatty acids (FAs) on hippocampal neuronal morphology. PA challenge resulted in shorter and less arborised dendrites while DHA had no effect when applied alone but counteracted the effects of PA when FAs were used in combination. Dendritic morphology recovered when PA was removed from the cell culture media. CONCLUSION: This study provides evidence for the rapid and reversible effects of diet on the hippocampal proteome and the impact of PA and DHA on dendritic structure.

11.
Nutr Metab (Lond) ; 16: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31168311

RESUMO

BACKGROUND: Prolonged over-consumption of a high-fat diet (HFD) commonly leads to obesity and insulin resistance. However, even 3 days of HFD consumption has been linked to inflammation within the key homeostatic brain region, the hypothalamus. METHODS: Mice were fed either a low-fat diet (LFD) or HFD containing 10% or 60% (Kcal) respectively from fat for 3 days. Mice were weighed, food intake measured and glucose tolerance calculated using intraperitoneal glucose tolerance tests (IPGTT). Proteomic analysis was carried out to determine if hypothalamic proteins were changed by a HFD. The direct effects of dietary fatty acids on mitochondrial morphology and on one of the proteins most changed by a HFD, dihydropyrimidinase-related protein 2 (DRP-2) a microtubule-associated protein which regulates microtubule dynamics, were also tested in mHypoE-N42 (N42) neuronal cells challenged with palmitic acid (PA) and oleic acid (OA). RESULTS: Mice on the HFD, as expected, showed increased adiposity and glucose intolerance. Hypothalamic proteomic analysis revealed changes in 104 spots after 3 days on HFD, which, when identified by LC/MS/MS, were found to represent 78 proteins mainly associated with cytoskeleton and synaptic plasticity, stress response, glucose metabolism and mitochondrial function. Over half of the changed proteins have also been reported to be changed in neurodegenerative conditions such as Alzheimer's disease. Also,in N42 neurons mitochondrial morphology and DRP-2 levels were altered by PA but not by OA. CONCLUSION: These results demonstrate that within 3 days, there is a relatively large effect of HFD on the hypothalamic proteome indicative of cellular stress, altered synaptic plasticity and mitochondrial function, but not inflammation. Changes in N42 cells show an effect of PA but not OA on DRP-2 and on mitochondrial morphology indicating that long-chain saturated fatty acids damage neuronal function.

12.
Endocrinology ; 149(9): 4534-43, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18499762

RESUMO

Evidence suggests that the adipocyte-derived hormone resistin (RSTN) directly regulates both feeding and peripheral metabolism through, so far, undefined hypothalamic-mediated mechanisms. Here, we demonstrate that the anorectic effect of RSTN is associated with inappropriately decreased mRNA expression of orexigenic (agouti-related protein and neuropeptide Y) and increased mRNA expression of anorexigenic (cocaine and amphetamine-regulated transcript) neuropeptides in the arcuate nucleus of the hypothalamus. Of interest, RSTN also exerts a profound nutrition-dependent inhibitory effect on hypothalamic fatty acid metabolism, as indicated by increased phosphorylation levels of both AMP-activated protein kinase and its downstream target acetyl-coenzyme A carboxylase, associated with decreased expression of fatty acid synthase in the ventromedial nucleus of the hypothalamus. In addition, we also demonstrate that chronic central RSTN infusion results in decreased body weight and major changes in peripheral expression of lipogenic enzymes, in a tissue-specific and nutrition-dependent manner. Thus, in the fed state central RSTN is associated with induced expression of fatty acid synthesis enzymes and proinflammatory cytokines in liver, whereas its administration in the fasted state does so in white adipose tissue. Overall, our results indicate that RSTN controls feeding and peripheral lipid metabolism and suggest that hepatic RSTN-induced insulin resistance may be mediated by central activation of de novo lipogenesis in liver.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Hipotálamo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Resistina/farmacologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Ingestão de Alimentos/efeitos dos fármacos , Jejum/metabolismo , Hipotálamo/metabolismo , Injeções Intraventriculares , Resistência à Insulina/fisiologia , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Resistina/administração & dosagem , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Tempo
13.
Sci Rep ; 8(1): 11976, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097632

RESUMO

Alzheimer's disease is a leading cause of morbidity and mortality with no cure and only limited treatment available. Obesity and type 2 diabetes are positively associated with the development of premature cognitive decline and Alzheimer's disease, linking diet with these conditions. Here we demonstrate that in mice episodic memory, together with spatial and contextual associative memory, is compromised after only one day of high-fat diet. However, object memory remains intact. This shows not only a more rapid effect than previously reported but also that more complex memories are at higher risk of being compromised by a high-fat diet. In addition, we show that these memory deficits are rapidly reversed by switching mice from a high-fat diet back to a low-fat diet. These findings have important implications for the contribution of nutrition to the development of cognitive decline and Alzheimer's disease.


Assuntos
Dieta Hiperlipídica , Memória Episódica , Tecido Adiposo/metabolismo , Doença de Alzheimer/psicologia , Animais , Comportamento Animal , Peso Corporal , Disfunção Cognitiva , Modelos Animais de Doenças , Glucose/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos , Obesidade/psicologia
14.
Sci Rep ; 8(1): 15566, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349136

RESUMO

Dietary fibers (DF) can prevent obesity in rodents fed a high-fat diet (HFD). Their mode of action is not fully elucidated, but the gut microbiota have been implicated. This study aimed to identify the effects of seven dietary fibers (barley beta-glucan, apple pectin, inulin, inulin acetate ester, inulin propionate ester, inulin butyrate ester or a combination of inulin propionate ester and inulin butyrate ester) effective in preventing diet-induced obesity and links to differences in cecal bacteria and host gene expression. Mice (n = 12) were fed either a low-fat diet (LFD), HFD or a HFD supplemented with the DFs, barley beta-glucan, apple pectin, inulin, inulin acetate ester, inulin propionate ester, inulin butyrate ester or a combination of inulin propionate ester and inulin butyrate ester for 8 weeks. Cecal bacteria were determined by Illumina MiSeq sequencing of 16S rRNA gene amplicons. Host responses, body composition, metabolic markers and gene transcription (cecum and liver) were assessed post intervention. HFD mice showed increased adiposity, while all of the DFs prevented weight gain. DF specific differences in cecal bacteria were observed. Results indicate that diverse DFs prevent weight gain on a HFD, despite giving rise to different cecal bacteria profiles. Conversely, common host responses to dietary fiber observed are predicted to be important in improving barrier function and genome stability in the gut, maintaining energy homeostasis and reducing HFD induced inflammatory responses in the liver.


Assuntos
Fibras na Dieta/uso terapêutico , Microbioma Gastrointestinal , Obesidade/dietoterapia , Animais , Ceco/metabolismo , Ceco/microbiologia , Fibras na Dieta/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia
15.
ISME J ; 12(2): 610-622, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29192904

RESUMO

The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and ß-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.


Assuntos
Bactérias/metabolismo , Carboidratos da Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbiota , Bactérias/genética , Bactérias/isolamento & purificação , Butiratos/metabolismo , Eubacterium/metabolismo , Fezes/microbiologia , Fermentação , Galactose/análogos & derivados , Humanos , Mananas/metabolismo , Propionatos/metabolismo , Reprodutibilidade dos Testes , Ramnose/metabolismo
16.
Genes Nutr ; 13: 28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519364

RESUMO

BACKGROUND: Energy homeostasis is regulated by the hypothalamus but fails when animals are fed a high-fat diet (HFD), and leptin insensitivity and obesity develops. To elucidate the possible mechanisms underlying these effects, a microarray-based transcriptomics approach was used to identify novel genes regulated by HFD and leptin in the mouse hypothalamus. RESULTS: Mouse global array data identified serpinA3N as a novel gene highly upregulated by both a HFD and leptin challenge. In situ hybridisation showed serpinA3N expression upregulation by HFD and leptin in all major hypothalamic nuclei in agreement with transcriptomic gene expression data. Immunohistochemistry and studies in the hypothalamic clonal neuronal cell line, mHypoE-N42 (N42), confirmed that alpha 1-antichymotrypsin (α1AC), the protein encoded by serpinA3, is localised to neurons and revealed that it is secreted into the media. SerpinA3N expression in N42 neurons is upregulated by palmitic acid and by leptin, together with IL-6 and TNFα, and all three genes are downregulated by the anti-inflammatory monounsaturated fat, oleic acid. Additionally, palmitate upregulation of serpinA3 in N42 neurons is blocked by the NFκB inhibitor, BAY11, and the upregulation of serpinA3N expression in the hypothalamus by HFD is blunted in IL-1 receptor 1 knockout (IL-1R1 -/- ) mice. CONCLUSIONS: These data demonstrate that serpinA3 expression is implicated in nutritionally mediated hypothalamic inflammation.

17.
Endocrinology ; 148(1): 21-6, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17008393

RESUMO

Ghrelin stimulates food intake and adiposity and thereby increases body weight (BW) in rodents after central as well as peripheral administration. Recently, it was discovered that the gene precursor of ghrelin encoded another secreted and bioactive peptide named obestatin. First reports appeared to demonstrate that this peptide requires an amidation for its biological activity and acts through the orphan receptor, GPR-39. Obestatin was shown to have actions opposite to ghrelin on food intake, BW, and gastric emptying. In the present study, we failed to observe any effect of obestatin on food intake, BW, body composition, energy expenditure, locomotor activity, respiratory quotient, or hypothalamic neuropeptides involved in energy balance regulation. In agreement with the first report, we were unable to find any effect of obestatin on GH secretion in vivo. Moreover, we were unable to find mRNA expression of GPR-39, the putative obestatin receptor, in the hypothalamus of rats. Therefore, the results presented here do not support a role of the obestatin/GPR-39 system in the regulation of energy balance.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Hormônio do Crescimento/metabolismo , Hipotálamo/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Grelina , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hormônios Peptídicos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Vagotomia , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia
18.
J Chem Neuroanat ; 33(3): 155-63, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17391913

RESUMO

Leptin, via leptin receptors (Ob-R), regulates appetite and energy balance. Of the six isoforms of the receptor identified, so far, only the long form (Ob-Rb) can fully activate downstream signal transduction pathways. Although the expression and function of leptin receptors is well described in the adult brain, little is known about the ontogeny of leptin receptor system around the time of birth. In this study, the mRNA expression patterns of total leptin receptor, Ob-R, and the long signalling form of the receptor, Ob-Rb, were investigated in the brain of embryonic and newborn rats using in situ hybridisation and [125I]leptin binding. On embryonic day 18 (E18), Ob-R mRNA was detected in the choroid plexus and the ependymal layer of the third ventricle by in situ hybridisation. At E21, Ob-Rb mRNA was first observed in the arcuate and the ventral premammillary hypothalamic nuclei while at P3, receptor expression was also found in the dorsomedial nucleus. Other leptin target areas identified were the trigeminal ganglion, the thalamus and the hippocampus. Using quantitative receptor autoradiography specific [125I]leptin binding sites on the choroid plexus were found to increase with age in contrast to the ependymal layer of the third ventricle where levels decreased with age. Together these findings demonstrate that the leptin receptor system is differentially regulated during late gestation and early postnatal life in the rat.


Assuntos
Leptina/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Animais , Animais Recém-Nascidos , Autorradiografia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Hibridização In Situ , Radioisótopos do Iodo , Leptina/farmacologia , Gravidez , Prosencéfalo/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores para Leptina
19.
Compr Physiol ; 7(2): 741-764, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28333388

RESUMO

The ability of the brain to directly control glucose levels in the blood independently of its effects on food intake and body weight has been known ever since 1854 when Claude Bernard, a French physiologist, discovered that lesioning the floor of the fourth ventricle in rabbits led to a rise of sugar in the blood. Despite this outstanding discovery at that time, it took more than 140 years before progress started to be made in identifying the underlying mechanisms of brain-mediated control of glucose homeostasis. Technological advances including the generation of brain insulin receptor null mice revealed that insulin action specifically in the central nervous system is required for the regulation of glucose metabolism, particularly in the modulation of hepatic glucose production. Furthermore, it was established that the hormone leptin, known for its role in regulating food intake and body weight, actually exerts its most potent effects on glucose metabolism, and that this function of leptin is mediated centrally. Under certain circumstances, high levels of leptin can replicate the actions of insulin, thus challenging the idea that life without insulin is impossible. Disruptions of central insulin signaling and glucose metabolism not only lead to impairments in whole body glucose homeostasis, they also have other serious consequences, including the development of Alzheimer's disease which is sometimes referred to as type 3 diabetes reflecting its common etiology with type 2 diabetes. © 2017 American Physiological Society. Compr Physiol 7:471-764, 2017.


Assuntos
Glicemia/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/efeitos adversos , Homeostase/fisiologia , Humanos , Doenças Hipotalâmicas/etiologia , Inflamação/etiologia , Insulina/fisiologia , Leptina/metabolismo , Leptina/fisiologia , Receptor de Insulina/fisiologia , Via de Sinalização Wnt/fisiologia
20.
J Endocrinol ; 190(2): 545-53, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16899587

RESUMO

Central neuromedin U (NMU) functions in energy balance, the hypothalamic-pituitary-adrenal axis, LH release and circadian rhythmicity. In rats, high levels of NMU occur in the hypothalamic suprachiasmatic nuclei and the pars tuberalis of the pituitary. NMU expression in the pars tuberalis appears to be downregulated in the Zucker fatty (fa/fa) rat, lacking functional leptin receptors. In contrast, in the dorsomedial (DMH) nuclei of the mouse, NMU expression is higher in the ob/ob mouse, lacking leptin, and is upregulated by fasting. However, leptin appears not to change NMU gene expression in either the mouse DMH or the rat pars tuberalis. Thus, the present study aims to better identify factors influencing central NMU expression in the rat pars tuberalis. Sprague-Dawley rats were fasted and/or challenged with intracerebroventricular leptin or ghrelin and gene expression was measured using real-time reverse transcriptase-PCR and quantitative in situ hybridisation with riboprobes specific for NMU and NMU receptor (NMU-R2). NMU expression in the rat pars tuberalis was elevated by fasting. Ghrelin administration had no effect on the level of NMU expression, but leptin was found to diminish the expression in a concentration- and time-dependent manner. NMU-R2 expression was unchanged in any of the groups measured. These results suggest that NMU expression in rat pars tuberalis is upregulated in states of negative energy balance, and this may be mediated indirectly by changes in leptin levels. These results demonstrate a link between energy balance and NMU expression in the pars tuberalis of the pituitary.


Assuntos
Metabolismo Energético , Leptina/farmacologia , Neuropeptídeos/metabolismo , Hipófise/metabolismo , Animais , Jejum , Grelina , Hibridização In Situ/métodos , Leptina/genética , Leptina/metabolismo , Masculino , Proteínas de Membrana/genética , Neuropeptídeos/genética , Núcleo Hipotalâmico Paraventricular/metabolismo , Hormônios Peptídicos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores para Leptina , Receptores de Neurotransmissores/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA