Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Blood ; 140(8): 909-921, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35776903

RESUMO

Patients with severe aplastic anemia (SAA) can have an unrecognized inherited bone marrow failure syndrome (IBMFS) because of phenotypic heterogeneity. We curated germline genetic variants in 104 IBMFS-associated genes from exome sequencing performed on 732 patients who underwent hematopoietic cell transplant (HCT) between 1989 and 2015 for acquired SAA. Patients with pathogenic or likely pathogenic (P/LP) variants fitting known disease zygosity patterns were deemed unrecognized IBMFS. Carriers were defined as patients with a single P/LP variant in an autosomal recessive gene or females with an X-linked recessive P/LP variant. Cox proportional hazard models were used for survival analysis with follow-up until 2017. We identified 113 P/LP single-nucleotide variants or small insertions/deletions and 10 copy number variants across 42 genes in 121 patients. Ninety-one patients had 105 in silico predicted deleterious variants of uncertain significance (dVUS). Forty-eight patients (6.6%) had an unrecognized IBMFS (33% adults), and 73 (10%) were carriers. No survival difference between dVUS and acquired SAA was noted. Compared with acquired SAA (no P/LP variants), patients with unrecognized IBMFS, but not carriers, had worse survival after HCT (IBMFS hazard ratio [HR], 2.13; 95% confidence interval[CI], 1.40-3.24; P = .0004; carriers HR, 0.96; 95% CI, 0.62-1.50; P = .86). Results were similar in analyses restricted to patients receiving reduced-intensity conditioning (n = 448; HR IBMFS = 2.39; P = .01). The excess mortality risk in unrecognized IBMFS attributed to death from organ failure (HR = 4.88; P < .0001). Genetic testing should be part of the diagnostic evaluation for all patients with SAA to tailor therapeutic regimens. Carriers of a pathogenic variant in an IBMFS gene can follow HCT regimens for acquired SAA.


Assuntos
Anemia Aplástica , Transplante de Células-Tronco Hematopoéticas , Adulto , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Testes Genéticos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Condicionamento Pré-Transplante/métodos
2.
J Invest Dermatol ; 144(7): 1534-1543.e2, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38272206

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a severely debilitating disorder caused by pathogenic variants in COL7A1 and is characterized by extreme skin fragility, chronic inflammation, and fibrosis. A majority of patients with RDEB develop squamous cell carcinoma, a highly aggressive skin cancer with limited treatment options currently available. In this study, we utilized an approach leveraging whole-genome sequencing and RNA sequencing across 3 different tissues in a single patient with RDEB to gain insight into possible mechanisms of RDEB-associated squamous cell carcinoma progression and to identify potential therapeutic options. As a result, we identified PLK-1 as a possible candidate for targeted therapy and discovered microsatellite instability and accelerated aging as factors potentially contributing to the aggressive nature and early onset of RDEB squamous cell carcinoma. By integrating multitissue genomic and transcriptomic analyses in a single patient, we demonstrate the promise of bridging the gap between genomic research and clinical applications for developing tailored therapies for patients with rare genetic disorders such as RDEB.


Assuntos
Carcinoma de Células Escamosas , Colágeno Tipo VII , Epidermólise Bolhosa Distrófica , Instabilidade de Microssatélites , Neoplasias Cutâneas , Humanos , Envelhecimento/genética , Envelhecimento/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Pele/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Sequenciamento Completo do Genoma
3.
Acta Biomater ; 60: 210-219, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28709984

RESUMO

Current clinical methods to treat articular cartilage lesions provide temporary relief of the symptoms but fail to permanently restore the damaged tissue. Tissue engineering, using mesenchymal stem cells (MSCs) combined with scaffolds and bioactive factors, is viewed as a promising method for repairing cartilage injuries. However, current tissue engineered constructs display inferior mechanical properties compared to native articular cartilage, which could be attributed to the lack of structural organization of the extracellular matrix (ECM) of these engineered constructs in comparison to the highly oriented structure of articular cartilage ECM. We previously showed that we can guide MSCs undergoing chondrogenesis to align using microscale guidance channels on the surface of a two-dimensional (2-D) collagen scaffold, which resulted in the deposition of aligned ECM within the channels and enhanced mechanical properties of the constructs. In this study, we developed a technique to roll 2-D collagen scaffolds containing MSCs within guidance channels in order to produce a large-scale, three-dimensional (3-D) tissue engineered cartilage constructs with enhanced mechanical properties compared to current constructs. After rolling the MSC-scaffold constructs into a 3-D cylindrical structure, the constructs were cultured for 21days under chondrogenic culture conditions. The microstructure architecture and mechanical properties of the constructs were evaluated using imaging and compressive testing. Histology and immunohistochemistry of the constructs showed extensive glycosaminoglycan (GAG) and collagen type II deposition. Second harmonic generation imaging and Picrosirius red staining indicated alignment of neo-collagen fibers within the guidance channels of the constructs. Mechanical testing indicated that constructs containing the guidance channels displayed enhanced compressive properties compared to control constructs without these channels. In conclusion, using a novel roll-up method, we have developed large scale MSC based tissue-engineered cartilage that shows microscale structural organization and enhanced compressive properties compared to current tissue engineered constructs. STATEMENT OF SIGNIFICANCE: Tissue engineered cartilage constructs made with human mesenchymal stem cells (hMSCs), scaffolds and bioactive factors are a promising solution to treat cartilage defects. A major disadvantage of these constructs is their inferior mechanical properties compared to the native tissue, which is likely due to the lack of structural organization of the extracellular matrix of the engineered constructs. In this study, we developed three-dimensional (3-D) cartilage constructs from rectangular scaffold sheets containing hMSCs in micro-guidance channels and characterized their mechanical properties and metabolic requirements. The work led to a novel roll-up method to embed 2-D microscale structures in 3-D constructs. Further, micro-guidance channels incorporated within the 3-D cartilage constructs led to the production of aligned cell-produced matrix and enhanced mechanical function.


Assuntos
Cartilagem/metabolismo , Condrogênese , Colágeno/química , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Cartilagem/citologia , Bovinos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia
4.
Am J Physiol Endocrinol Metab ; 293(6): E1795-803, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17911340

RESUMO

Prolactin (PRL) has both stimulatory and inhibitory effects on testicular function, a finding we hypothesized may be related in some part to the form of the hormone present or administered. In the analysis of the pituitary secretion profiles of early pubescent vs. mature male rats, we found PRL released from early pubescent pituitaries had about twice the degree of phosphorylation. Treatment of mature males with either unmodified PRL (U-PRL) or phosphorylated PRL (via the molecular mimic S179D PRL) for a period of 4 wk (circulating level of approximately 50 ng/ml) showed serum testosterone decreased by approximately 35% only by treatment with the phospho-mimic S179D PRL. Given the specificity of this effect, it was initially surprising that both forms of PRL decreased testicular expression of 3beta-hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein. Both forms also increased expression of the luteinizing hormone receptor, but only S179D PRL increased the ratio of short to long PRL receptors. Endogenous PRL and luteinizing hormone levels were unchanged in all groups in this time frame, suggesting that effects on steroidogenic gene expression were directly on the testis. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling analysis combined with staining for 3beta-hydroxysteroid dehydrogenase and morphometric analysis showed that S179D PRL, but not U-PRL, increased apoptosis of Leydig cells, a finding supported by increased staining for Fas and Fas ligand in the testicular interstitium, providing an explanation for the specific effect on testosterone. S179D PRL, but not U-PRL, also increased apoptosis of primary spermatogonia, and U-PRL, but not S179D PRL, decreased apoptosis of elongating spermatids. Thus, in mature males, hyperprolactinemic levels of both forms of PRL have common effects on steroidogenic proteins, but specific effects on the apoptosis of Leydig and germ cells.


Assuntos
Prolactina/metabolismo , Processamento de Proteína Pós-Traducional , Testículo/metabolismo , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Hormônio Luteinizante/sangue , Masculino , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Hipófise/metabolismo , Prolactina/genética , Prolactina/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores do LH/genética , Receptores da Prolactina/genética , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/citologia , Testículo/efeitos dos fármacos , Testosterona/sangue , Receptor fas/metabolismo
5.
Prostate ; 54(1): 25-33, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12481252

RESUMO

BACKGROUND: In the current study, we have investigated the individual roles of unmodified, wild-type prolactin (WT PRL) and a molecular mimic of phosphorylated prolactin (S179D PRL) in the normal rat prostate. METHODS: In the first animal experiment, recombinant WT PRL and S179D PRL were delivered to adult male rats at a rate of 14 microg/kg per day for 3 weeks. In the second animal experiment, two subcutaneous (200 microg/kg) injections of long-acting forms of the two PRLs were given to adult male rats on day 1 and day 22 for a total of 5.5 weeks of treatment. RESULTS: The different forms of PRL had opposite effects on the normal rat prostate, independently of androgens. WT PRL promoted morphologic changes in prostate epithelium consistent with preparation for cell proliferation, whereas S179D PRL produced morphologic evidence of a more differentiated epithelium. Northern blot analysis of expression of the two major prostate specific proteins, prostatein and probasin, showed that WT PRL decreased, whereas S179D PRL increased, the expression of the mRNAs for these two proteins. At the same time, S179D PRL reduced both testosterone and dihydrotestosterone levels. CONCLUSION: We conclude that PRL is an important modulator of normal rat prostate biology and that different forms of PRL have specific functions. The molecular mimic of phosphorylated PRL, S179D PRL, is the most important in terms of epithelial cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Regulação da Expressão Gênica , Prolactina/farmacologia , Próstata/citologia , Próstata/fisiologia , Animais , Primers do DNA , Di-Hidrotestosterona/análise , Masculino , Fosforilação , Prolactina/análogos & derivados , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testosterona/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA