Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 165(3): 656-669.e8, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271289

RESUMO

BACKGROUND & AIMS: The amino acid hypusine, synthesized from the polyamine spermidine by the enzyme deoxyhypusine synthase (DHPS), is essential for the activity of eukaryotic translation initiation factor 5A (EIF5A). The role of hypusinated EIF5A (EIF5AHyp) remains unknown in intestinal homeostasis. Our aim was to investigate EIF5AHyp in the gut epithelium in inflammation and carcinogenesis. METHODS: We used human colon tissue messenger RNA samples and publicly available transcriptomic datasets, tissue microarrays, and patient-derived colon organoids. Mice with intestinal epithelial-specific deletion of Dhps were investigated at baseline and in models of colitis and colon carcinogenesis. RESULTS: We found that patients with ulcerative colitis and Crohn's disease exhibit reduced colon levels of DHPS messenger RNA and DHPS protein and reduced levels of EIF5AHyp. Similarly, colonic organoids from colitis patients also show down-regulated DHPS expression. Mice with intestinal epithelial-specific deletion of Dhps develop spontaneous colon hyperplasia, epithelial proliferation, crypt distortion, and inflammation. Furthermore, these mice are highly susceptible to experimental colitis and show exacerbated colon tumorigenesis when treated with a carcinogen. Transcriptomic and proteomic analysis on colonic epithelial cells demonstrated that loss of hypusination induces multiple pathways related to cancer and immune response. Moreover, we found that hypusination enhances translation of numerous enzymes involved in aldehyde detoxification, including glutathione S-transferases and aldehyde dehydrogenases. Accordingly, hypusination-deficient mice exhibit increased levels of aldehyde adducts in the colon, and their treatment with a scavenger of electrophiles reduces colitis. CONCLUSIONS: Hypusination in intestinal epithelial cells has a key role in the prevention of colitis and colorectal cancer, and enhancement of this pathway via supplementation of spermidine could have a therapeutic impact.


Assuntos
Colite , Espermidina , Humanos , Animais , Camundongos , Espermidina/farmacologia , Espermidina/metabolismo , Proteômica , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Carcinogênese/genética , Colite/induzido quimicamente , Colite/genética , Colite/prevenção & controle , Homeostase , Inflamação
2.
J Immunol ; 209(4): 796-805, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35896340

RESUMO

Colonization by Helicobacter pylori is associated with gastric diseases, ranging from superficial gastritis to more severe pathologies, including intestinal metaplasia and adenocarcinoma. The interplay of the host response and the pathogen affect the outcome of disease. One major component of the mucosal response to H. pylori is the activation of a strong but inefficient immune response that fails to control the infection and frequently causes tissue damage. We have shown that polyamines can regulate H. pylori-induced inflammation. Chemical inhibition of ornithine decarboxylase (ODC), which generates the polyamine putrescine from l-ornithine, reduces gastritis in mice and adenocarcinoma incidence in gerbils infected with H. pylori However, we have also demonstrated that Odc deletion in myeloid cells enhances M1 macrophage activation and gastritis. Here we used a genetic approach to assess the specific role of gastric epithelial ODC during H. pylori infection. Specific deletion of the gene encoding for ODC in gastric epithelial cells reduces gastritis, attenuates epithelial proliferation, alters the metabolome, and downregulates the expression of immune mediators induced by H. pylori Inhibition of ODC activity or ODC knockdown in human gastric epithelial cells dampens H. pylori-induced NF-κB activation, CXCL8 mRNA expression, and IL-8 production. Chronic inflammation is a major risk factor for the progression to more severe pathologies associated with H. pylori infection, and we now show that epithelial ODC plays an important role in mediating this inflammatory response.


Assuntos
Adenocarcinoma , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Adenocarcinoma/metabolismo , Animais , Células Epiteliais/metabolismo , Mucosa Gástrica/patologia , Helicobacter pylori/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo
3.
Infect Immun ; 91(11): e0032223, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37800916

RESUMO

One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic or enterohemorrhagic forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report, we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against enteropathogens.


Assuntos
Infecções por Enterobacteriaceae , Escherichia coli , Criança , Humanos , Animais , Camundongos , Citrobacter rodentium/genética , Granzimas , Infecções por Enterobacteriaceae/microbiologia , Camundongos Endogâmicos C57BL , Bactérias
4.
Gastroenterology ; 162(3): 813-827.e8, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34767785

RESUMO

BACKGROUND & AIMS: Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis. METHODS: SMOX was quantified in human colitis and associated dysplasia using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. We used wild-type (WT) and Smox-/- C57BL/6 mice treated with dextran sulfate sodium (DSS) or azoxymethane (AOM)-DSS as models of colitis and CAC, respectively. Mice with epithelial-specific deletion of Apc were used as a model of sporadic colon cancer. Animals were supplemented or not with Spd in the drinking water. Colonic polyamines, inflammation, tumorigenesis, transcriptomes, and microbiomes were assessed. RESULTS: SMOX messenger RNA levels were decreased in human ulcerative colitis tissues and inversely correlated with disease activity, and SMOX protein was reduced in colitis-associated dysplasia. DSS colitis and AOM-DSS-induced dysplasia and tumorigenesis were worsened in Smox-/- vs WT mice and improved in both genotypes with Spd. Tumor development caused by Apc deletion was also reduced by Spd. Smox deletion and AOM-DSS treatment were both strongly associated with increased expression of α-defensins, which was reduced by Spd. A shift in the microbiome, with reduced abundance of Prevotella and increased Proteobacteria and Deferribacteres, occurred in Smox-/- mice and was reversed with Spd. CONCLUSIONS: Loss of SMOX is associated with exacerbated colitis and CAC, increased α-defensin expression, and dysbiosis of the microbiome. Spd supplementation reverses these phenotypes, indicating that it has potential as an adjunctive treatment for colitis and chemopreventive for colon carcinogenesis.


Assuntos
Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Colite/genética , Neoplasias do Colo/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Espermidina/uso terapêutico , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Azoximetano , Colite/induzido quimicamente , Colite/enzimologia , Colite/prevenção & controle , Colite Ulcerativa/enzimologia , Colite Ulcerativa/genética , Colo/enzimologia , Colo/patologia , Neoplasias do Colo/prevenção & controle , Sulfato de Dextrana , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Lesões Pré-Cancerosas/enzimologia , Fatores de Proteção , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Espermidina/metabolismo , Espermidina/farmacologia , Redução de Peso/efeitos dos fármacos , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , Poliamina Oxidase
5.
Immunity ; 41(3): 451-464, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25220211

RESUMO

Innate immune responses are critical for mucosal immunity. Here we describe an innate lymphocyte population, iCD8α cells, characterized by expression of CD8α homodimers. iCD8α cells exhibit innate functional characteristics such as the capacity to engulf and kill bacteria. Development of iCD8α cells depends on expression of interleukin-2 receptor γ chain (IL-2Rγc), IL-15, and the major histocompatibility complex (MHC) class Ib protein H2-T3, also known as the thymus leukemia antigen or TL. While lineage tracking experiments indicated that iCD8α cells have a lymphoid origin, their development was independent of the transcriptional suppressor Id2, suggesting that these cells do not belong to the family of innate lymphoid cells. Finally, we identified cells with a similar phenotype in humans, which were profoundly depleted in newborns with necrotizing enterocolitis. These findings suggest a critical role of iCD8α cells in immune responses associated with the intestinal epithelium.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD8/biossíntese , Imunidade nas Mucosas/imunologia , Mucosa Intestinal/citologia , Linfócitos/imunologia , Animais , Citrobacter rodentium/imunologia , Citocalasina D/farmacologia , Enterocolite Necrosante , Helicobacter pylori/imunologia , Antígenos de Histocompatibilidade Classe I/biossíntese , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Subunidade gama Comum de Receptores de Interleucina/biossíntese , Interleucina-15/biossíntese , Interleucina-2/biossíntese , Interleucina-7/biossíntese , Mucosa Intestinal/imunologia , Ativação Linfocitária/imunologia , Linfócitos/classificação , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia
6.
Gastroenterology ; 160(4): 1106-1117.e3, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33220252

RESUMO

BACKGROUND & AIMS: Helicobacter pylori eradication and endoscopic surveillance of gastric precancerous lesions are strategies to reduce gastric cancer (GC) risk. To our knowledge, this study is the longest prospective cohort of an H pylori eradication trial in a Hispanic population. METHODS: A total of 800 adults with precancerous lesions were randomized to anti-H pylori treatment or placebo. Gastric biopsy samples taken at baseline and 3, 6, 12, 16, and 20 years were assessed by our Correa histopathology score. A generalized linear mixed model with a participant-level random intercept was used to estimate the effect of H pylori status on the score over time. Logistic regression models were used to estimate progression by baseline diagnosis and to estimate GC risk by intestinal metaplasia (IM) subtype and anatomic location. RESULTS: Overall, 356 individuals completed 20 years of follow-up. Anti-H pylori therapy (intention-to-treat) reduced progression of the Correa score (odds ratio [OR], 0.59; 95% confidence interval [CI], 0.38-0.93). H pylori-negative status had a beneficial effect on the score over time (P = .036). Among individuals with IM (including indefinite for dysplasia) at baseline, incidence rates per 100 person-years were 1.09 (95% CI, 0.85-1.33) for low-grade/high-grade dysplasia and 0.14 (95% CI, 0.06-0.22) for GC. Incomplete-type (vs complete-type) IM at baseline presented higher GC risk (OR, 13.4; 95% CI, 1.8-103.8). Individuals with corpus (vs antrum-restricted) IM showed an OR of 2.1 (95% CI, 0.7-6.6) for GC. CONCLUSIONS: In a high-GC-risk Hispanic population, anti-H pylori therapy had a long-term beneficial effect against histologic progression. Incomplete IM is a strong predictor of GC risk.


Assuntos
Antibacterianos/uso terapêutico , Mucosa Gástrica/patologia , Infecções por Helicobacter/tratamento farmacológico , Lesões Pré-Cancerosas/epidemiologia , Neoplasias Gástricas/prevenção & controle , Adulto , Idoso , Biópsia , Colômbia/epidemiologia , Progressão da Doença , Feminino , Seguimentos , Mucosa Gástrica/diagnóstico por imagem , Mucosa Gástrica/microbiologia , Gastroscopia/estatística & dados numéricos , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/isolamento & purificação , Humanos , Incidência , Masculino , Metaplasia/diagnóstico , Metaplasia/epidemiologia , Metaplasia/microbiologia , Metaplasia/patologia , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/microbiologia , Lesões Pré-Cancerosas/patologia , Estudos Prospectivos , Fatores de Risco , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Resultado do Tratamento
7.
Gastroenterology ; 160(5): 1694-1708.e3, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33388316

RESUMO

BACKGROUND & AIMS: Patients with inflammatory bowel disease (IBD) demonstrate nutritional selenium deficiencies and are at greater risk of developing colon cancer. Previously, we determined that global reduction of the secreted antioxidant selenium-containing protein, selenoprotein P (SELENOP), substantially increased tumor development in an experimental colitis-associated cancer (CAC) model. We next sought to delineate tissue-specific contributions of SELENOP to intestinal inflammatory carcinogenesis and define clinical context. METHODS: Selenop floxed mice crossed with Cre driver lines to delete Selenop from the liver, myeloid lineages, or intestinal epithelium were placed on an azoxymethane/dextran sodium sulfate experimental CAC protocol. SELENOP loss was assessed in human ulcerative colitis (UC) organoids, and expression was queried in human and adult UC samples. RESULTS: Although large sources of SELENOP, both liver- and myeloid-specific Selenop deletion failed to modify azoxymethane/dextran sodium sulfate-mediated tumorigenesis. Instead, epithelial-specific deletion increased CAC tumorigenesis, likely due to elevated oxidative stress with a resulting increase in genomic instability and augmented tumor initiation. SELENOP was down-regulated in UC colon biopsies and levels were inversely correlated with endoscopic disease severity and tissue S100A8 (calprotectin) gene expression. CONCLUSIONS: Although global selenium status is typically assessed by measuring liver-derived plasma SELENOP levels, our results indicate that the peripheral SELENOP pool is dispensable for CAC. Colonic epithelial SELENOP is the main contributor to local antioxidant capabilities. Thus, colonic SELENOP is the most informative means to assess selenium levels and activity in IBD patients and may serve as a novel biomarker for UC disease severity and identify patients most predisposed to CAC development.


Assuntos
Colite Ulcerativa/metabolismo , Neoplasias Associadas a Colite/prevenção & controle , Colite/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Estresse Oxidativo , Selenoproteína P/metabolismo , Adolescente , Animais , Azoximetano , Estudos de Casos e Controles , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Criança , Pré-Escolar , Colite/induzido quimicamente , Colite/genética , Colite Ulcerativa/genética , Neoplasias Associadas a Colite/induzido quimicamente , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/metabolismo , Colo/patologia , Dano ao DNA , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Instabilidade Genômica , Humanos , Mucosa Intestinal/patologia , Fígado/metabolismo , Masculino , Camundongos Knockout , Células Mieloides/metabolismo , Selenoproteína P/genética
8.
Gastroenterology ; 160(4): 1256-1268.e9, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33189701

RESUMO

BACKGROUND & AIMS: Inflammation in the gastrointestinal tract may lead to the development of cancer. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. Thus, we sought to determine the role of dicarbonyl electrophiles in inflammation-associated carcinogenesis. METHODS: The formation of isoLG adducts was analyzed in the gastric tissues of patients infected with Helicobacter pylori from gastritis to precancerous intestinal metaplasia, in human gastric organoids, and in patients with colitis and colitis-associated carcinoma (CAC). The effect on cancer development of a potent scavenger of dicarbonyl electrophiles, 5-ethyl-2-hydroxybenzylamine (EtHOBA), was determined in transgenic FVB/N insulin-gastrin (INS-GAS) mice and Mongolian gerbils as models of H pylori-induced carcinogenesis and in C57BL/6 mice treated with azoxymethane-dextran sulfate sodium as a model of CAC. The effect of EtHOBA on mutations in gastric epithelial cells of H pylori-infected INS-GAS mice was assessed by whole-exome sequencing. RESULTS: We show increased isoLG adducts in gastric epithelial cell nuclei in patients with gastritis and intestinal metaplasia and in human gastric organoids infected with H pylori. EtHOBA inhibited gastric carcinoma in infected INS-GAS mice and gerbils and attenuated isoLG adducts, DNA damage, and somatic mutation frequency. Additionally, isoLG adducts were elevated in tissues from patients with colitis, colitis-associated dysplasia, and CAC as well as in dysplastic tumors of C57BL/6 mice treated with azoxymethane-dextran sulfate sodium. In this model, EtHOBA significantly reduced adduct formation, tumorigenesis, and dysplasia severity. CONCLUSIONS: Dicarbonyl electrophiles represent a link between inflammation and somatic genomic alterations and are thus key targets for cancer chemoprevention.


Assuntos
Transformação Celular Neoplásica/imunologia , Neoplasias Associadas a Colite/imunologia , Lipídeos/imunologia , Lesões Pré-Cancerosas/imunologia , Neoplasias Gástricas/imunologia , Animais , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/prevenção & controle , Modelos Animais de Doenças , Células Epiteliais , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Gastrite/imunologia , Gastrite/microbiologia , Gastrite/patologia , Gerbillinae , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Helicobacter pylori/isolamento & purificação , Humanos , Lipídeos/antagonistas & inibidores , Metaplasia/imunologia , Metaplasia/microbiologia , Metaplasia/patologia , Camundongos , Camundongos Transgênicos , Organoides , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/microbiologia , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/prevenção & controle
9.
Proc Natl Acad Sci U S A ; 116(11): 5077-5085, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804204

RESUMO

Infection by Helicobacter pylori is the primary cause of gastric adenocarcinoma. The most potent H. pylori virulence factor is cytotoxin-associated gene A (CagA), which is translocated by a type 4 secretion system (T4SS) into gastric epithelial cells and activates oncogenic signaling pathways. The gene cagY encodes for a key component of the T4SS and can undergo gene rearrangements. We have shown that the cancer chemopreventive agent α-difluoromethylornithine (DFMO), known to inhibit the enzyme ornithine decarboxylase, reduces H. pylori-mediated gastric cancer incidence in Mongolian gerbils. In the present study, we questioned whether DFMO might directly affect H. pylori pathogenicity. We show that H. pylori output strains isolated from gerbils treated with DFMO exhibit reduced ability to translocate CagA in gastric epithelial cells. Further, we frequently detected genomic modifications in the middle repeat region of the cagY gene of output strains from DFMO-treated animals, which were associated with alterations in the CagY protein. Gerbils did not develop carcinoma when infected with a DFMO output strain containing rearranged cagY or the parental strain in which the wild-type cagY was replaced by cagY with DFMO-induced rearrangements. Lastly, we demonstrate that in vitro treatment of H. pylori by DFMO induces oxidative DNA damage, expression of the DNA repair enzyme MutS2, and mutations in cagY, demonstrating that DFMO directly affects genomic stability. Deletion of mutS2 abrogated the ability of DFMO to induce cagY rearrangements directly. In conclusion, DFMO-induced oxidative stress in H. pylori leads to genomic alterations and attenuates virulence.


Assuntos
Proteínas de Bactérias/genética , Carcinogênese/genética , Carcinogênese/patologia , Eflornitina/farmacologia , Helicobacter pylori/genética , Mutação/genética , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Animais , Dano ao DNA , Deleção de Genes , Rearranjo Gênico , Gerbillinae , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/patogenicidade , Masculino , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Virulência
10.
Gastroenterology ; 159(6): 2101-2115.e5, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828819

RESUMO

BACKGROUND & AIMS: Countries endemic for parasitic infestations have a lower incidence of Crohn's disease (CD) than nonendemic countries, and there have been anecdotal reports of the beneficial effects of helminths in CD patients. Tuft cells in the small intestine sense and direct the immune response against eukaryotic parasites. We investigated the activities of tuft cells in patients with CD and mouse models of intestinal inflammation. METHODS: We used microscopy to quantify tuft cells in intestinal specimens from patients with ileal CD (n = 19), healthy individuals (n = 14), and TNFΔARE/+ mice, which develop Crohn's-like ileitis. We performed single-cell RNA sequencing, mass spectrometry, and microbiome profiling of intestinal tissues from wild-type and Atoh1-knockout mice, which have expansion of tuft cells, to study interactions between microbes and tuft cell populations. We assessed microbe dependence of tuft cell populations using microbiome depletion, organoids, and microbe transplant experiments. We used multiplex imaging and cytokine assays to assess alterations in inflammatory response following expansion of tuft cells with succinate administration in TNFΔARE/+ and anti-CD3E CD mouse models. RESULTS: Inflamed ileal tissues from patients and mice had reduced numbers of tuft cells, compared with healthy individuals or wild-type mice. Expansion of tuft cells was associated with increased expression of genes that regulate the tricarboxylic acid cycle, which resulted from microbe production of the metabolite succinate. Experiments in which we manipulated the intestinal microbiota of mice revealed the existence of an ATOH1-independent population of tuft cells that was sensitive to metabolites produced by microbes. Administration of succinate to mice expanded tuft cells and reduced intestinal inflammation in TNFΔARE/+ mice and anti-CD3E-treated mice, increased GATA3+ cells and type 2 cytokines (IL22, IL25, IL13), and decreased RORGT+ cells and type 17 cytokines (IL23) in a tuft cell-dependent manner. CONCLUSIONS: We found that tuft cell expansion reduced chronic intestinal inflammation in mice. Strategies to expand tuft cells might be developed for treatment of CD.


Assuntos
Células Quimiorreceptoras/imunologia , Doença de Crohn/imunologia , Microbioma Gastrointestinal/imunologia , Ileíte/imunologia , Mucosa Intestinal/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Quimiorreceptoras/patologia , Doença de Crohn/microbiologia , Doença de Crohn/patologia , DNA Bacteriano/genética , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Humanos , Ileíte/microbiologia , Ileíte/patologia , Íleo/citologia , Íleo/imunologia , Íleo/microbiologia , Íleo/patologia , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Fatores de Proteção , RNA Ribossômico 16S/genética , RNA-Seq , Análise de Célula Única , Ácido Succínico/imunologia , Ácido Succínico/metabolismo
11.
J Clin Microbiol ; 59(5)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33692136

RESUMO

Colombia, South America has one of the world's highest burdens of Helicobacter pylori infection and gastric cancer. While multidrug antibiotic regimens can effectively eradicate H. pylori, treatment efficacy is being jeopardized by the emergence of antibiotic-resistant H. pylori strains. Moreover, the spectrum of and genetic mechanisms for antibiotic resistance in Colombia is underreported. In this study, 28 H. pylori strains isolated from gastric biopsy specimens from a high-gastric-cancer-risk (HGCR) population living in the Andes Mountains in Túquerres, Colombia and 31 strains from a low-gastric-cancer-risk (LGCR) population residing on the Pacific coast in Tumaco, Colombia were subjected to antibiotic susceptibility testing for amoxicillin, clarithromycin, levofloxacin, metronidazole, rifampin, and tetracycline. Resistance-associated genes were amplified by PCR for all isolates, and 29 isolates were whole-genome sequenced (WGS). No strains were resistant to amoxicillin, clarithromycin, or rifampin. One strain was resistant to tetracycline and had an A926G mutation in its 16S rRNA gene. Levofloxacin resistance was observed in 12/59 isolates and was significantly associated with N87I/K and/or D91G/Y mutations in gyrA Most isolates were resistant to metronidazole; this resistance was significantly higher in the LGCR (31/31) group compared to the HGCR (24/28) group. Truncations in rdxA and frxA were present in nearly all metronidazole-resistant strains. There was no association between phylogenetic relationship and resistance profiles based on WGS analysis. Our results indicate H. pylori isolates from Colombians exhibit multidrug antibiotic resistance. Continued surveillance of H. pylori antibiotic resistance in Colombia is warranted in order to establish appropriate eradication treatment regimens for this population.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Claritromicina/farmacologia , Colômbia/epidemiologia , Farmacorresistência Bacteriana/genética , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/epidemiologia , Helicobacter pylori/genética , Humanos , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S , América do Sul , Neoplasias Gástricas/tratamento farmacológico
12.
Mol Cell Proteomics ; 18(2): 352-371, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30455363

RESUMO

Helicobacter pylori is the strongest risk factor for gastric cancer. Initial interactions between H. pylori and its host originate at the microbial-gastric epithelial cell interface, and contact between H. pylori and gastric epithelium activates signaling pathways that drive oncogenesis. One microbial constituent that increases gastric cancer risk is the cag pathogenicity island, which encodes a type IV secretion system that translocates the effector protein, CagA, into host cells. We previously demonstrated that infection of Mongolian gerbils with a carcinogenic cag+H. pylori strain, 7.13, recapitulates many features of H. pylori-induced gastric cancer in humans. Therefore, we sought to define gastric proteomic changes induced by H. pylori that are critical for initiation of the gastric carcinogenic cascade. Gastric cell scrapings were harvested from H. pylori-infected and uninfected gerbils for quantitative proteomic analyses using isobaric tags for relative and absolute quantitation (iTRAQ). Quantitative proteomic analysis of samples from two biological replicate experiments quantified a total of 2764 proteins, 166 of which were significantly altered in abundance by H. pylori infection. Pathway mapping identified significantly altered inflammatory and cancer-signaling pathways that included Rab/Ras signaling proteins. Consistent with the iTRAQ results, RABEP2 and G3BP2 were significantly up-regulated in vitro, ex vivo in primary human gastric monolayers, and in vivo in gerbil gastric epithelium following infection with H. pylori strain 7.13 in a cag-dependent manner. Within human stomachs, RABEP2 and G3BP2 expression in gastric epithelium increased in parallel with the severity of premalignant and malignant lesions and was significantly elevated in intestinal metaplasia and dysplasia, as well as gastric adenocarcinoma, compared with gastritis alone. These results indicate that carcinogenic strains of H. pylori induce dramatic and specific changes within the gastric proteome in vivo and that a subset of altered proteins within pathways with oncogenic potential may facilitate the progression of gastric carcinogenesis in humans.


Assuntos
Proteínas de Transporte/metabolismo , Infecções por Helicobacter/complicações , Helicobacter pylori/patogenicidade , Neoplasias Gástricas/microbiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Gerbillinae , Infecções por Helicobacter/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Mapas de Interação de Proteínas , Proteômica , Proteínas de Ligação a RNA , Neoplasias Gástricas/metabolismo , Regulação para Cima
13.
Infect Immun ; 88(6)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32284370

RESUMO

Helicobacter pylori colonizes the gastric mucosa and secretes a pore-forming toxin (VacA). Two main types of VacA, m1 and m2, can be distinguished by phylogenetic analysis. Type m1 forms of VacA have been extensively studied, but there has been relatively little study of m2 forms. In this study, we generated H. pylori strains producing chimeric proteins in which VacA m1 segments of a parental strain were replaced by corresponding m2 sequences. In comparison to the parental m1 VacA protein, a chimeric protein (designated m2/m1) containing m2 sequences in the N-terminal portion of the m region was less potent in causing vacuolation of HeLa cells, AGS gastric cells, and AZ-521 duodenal cells and had reduced capacity to cause membrane depolarization or death of AZ-521 cells. Consistent with the observed differences in activity, the chimeric m2/m1 VacA protein bound to cells at reduced levels compared to the binding levels of the parental m1 protein. The presence of two strain-specific insertions or deletions within or adjacent to the m region did not influence toxin activity. Experiments with human gastric organoids grown as monolayers indicated that m1 and m2/m1 forms of VacA had similar cell-vacuolating activities. Interestingly, both forms of VacA bound preferentially to the basolateral surface of organoid monolayers and caused increased cell vacuolation when interacting with the basolateral surface compared to the apical surface. These data provide insights into functional correlates of sequence variation in the VacA midregion (m region).


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Variação Genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Domínios Proteicos , Multimerização Proteica , Transporte Proteico , Vacúolos/metabolismo , Vacúolos/ultraestrutura
14.
Curr Top Microbiol Immunol ; 421: 319-359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123895

RESUMO

The connection between inflammation and cancer was initially recognized by Rudolf Virchow in the nineteenth century. During the last decades, a large body of evidence has provided support to his hypothesis, and now inflammation is recognized as one of the hallmarks of cancer, both in etiopathogenesis and ongoing tumor growth. Infection with the pathogen Helicobacter pylori is the primary causal factor in 90% of gastric cancer (GC) cases. As we increase our understanding of how chronic inflammation develops in the stomach and contributes to carcinogenesis, there is increasing interest in targeting cancer-promoting inflammation as a strategy to treat GC. Moreover, once cancer develops and anti-cancer immune responses are suppressed, there is evidence of a substantial shift in the microenvironment and new targets for immune therapy emerge. In this chapter, we provide insight into inflammation-related factors, including T lymphocytes, macrophages, pro-inflammatory chemokines, and cytokines, which promote H. pylori-associated GC initiation and growth. While intervening with chronic inflammation is not a new practice in rheumatology or gastroenterology, this approach has not been fully explored for its potential to prevent carcinogenesis or to contribute to the treatment of GC. This review highlights current and possible strategies for therapeutic intervention including (i) targeting pro-inflammatory mediators, (ii) targeting growth factors and pathways involved in angiogenesis in the gastric tumor microenvironment, and (iii) enhancing anti-tumor immunity. In addition, we highlight a significant number of clinical trials and discuss the importance of individual tumor characterization toward offering personalized immune-related therapy.


Assuntos
Inflamação/imunologia , Inflamação/terapia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia , Citocinas/imunologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Infecções por Helicobacter/terapia , Helicobacter pylori/patogenicidade , Humanos , Inflamação/microbiologia , Inflamação/patologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/microbiologia , Microambiente Tumoral
15.
Amino Acids ; 52(2): 151-160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31016375

RESUMO

Naturally occurring polyamines are ubiquitously distributed and play important roles in cell development, amino acid and protein synthesis, oxidative DNA damage, proliferation, and cellular differentiation. Macrophages are essential in the innate immune response, and contribute to tissue remodeling. Naïve macrophages have two major potential fates: polarization to (1) the classical pro-inflammatory M1 defense response to bacterial pathogens and tumor cells, and (2) the alternatively activated M2 response, induced in the presence of parasites and wounding, and also implicated in the development of tumor-associated macrophages. ODC, the rate-limiting enzyme in polyamine synthesis, leads to an increase in putrescine levels, which impairs M1 gene transcription. Additionally, spermidine and spermine can regulate translation of pro-inflammatory mediators in activated macrophages. In this review, we focus on polyamines in macrophage activation patterns in the context of gastrointestinal inflammation and carcinogenesis. We seek to clarify mechanisms of innate immune regulation by polyamine metabolism and potential novel therapeutic targets.


Assuntos
Macrófagos/imunologia , Poliaminas/imunologia , Animais , Polaridade Celular , Humanos , Ativação de Macrófagos , Macrófagos/citologia , Transcrição Gênica
16.
Proc Natl Acad Sci U S A ; 114(5): E751-E760, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096401

RESUMO

Macrophage activation is a critical step in host responses during bacterial infections. Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine metabolism, has been well studied in epithelial cells and is known to have essential roles in many different cellular functions. However, its role in regulating macrophage function during bacterial infections is not well characterized. We demonstrate that macrophage-derived ODC is a critical regulator of M1 macrophage activation during both Helicobacter pylori and Citrobacter rodentium infection. Myeloid-specific Odc deletion significantly increased gastric and colonic inflammation, respectively, and enhanced M1 activation. Add-back of putrescine, the product of ODC, reversed the increased macrophage activation, indicating that ODC and putrescine are regulators of macrophage function. Odc-deficient macrophages had increased histone 3, lysine 4 (H3K4) monomethylation, and H3K9 acetylation, accompanied by decreased H3K9 di/trimethylation both in vivo and ex vivo in primary macrophages. These alterations in chromatin structure directly resulted in up-regulated gene transcription, especially M1 gene expression. Thus, ODC in macrophages tempers antimicrobial, M1 macrophage responses during bacterial infections through histone modifications and altered euchromatin formation, leading to the persistence and pathogenesis of these organisms.


Assuntos
Infecções por Enterobacteriaceae/imunologia , Infecções por Helicobacter/imunologia , Histonas/metabolismo , Macrófagos/imunologia , Ornitina Descarboxilase/imunologia , Animais , Linhagem Celular , Citrobacter rodentium , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/patologia , Citocinas/imunologia , Infecções por Enterobacteriaceae/patologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Gastrite/imunologia , Gastrite/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori , Humanos , Ativação de Macrófagos , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Ornitina Descarboxilase/genética , Putrescina/metabolismo
17.
BMC Cancer ; 19(1): 545, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174492

RESUMO

BACKGROUND: Geospatial technology has facilitated the discovery of disease distributions and etiology and helped target prevention programs. Globally, gastric cancer is the leading infection-associated cancer, and third leading cause of cancer mortality worldwide, with marked geographic variation. Central and South America have a significant burden, particularly in the mountainous regions. In the context of an ongoing population-based case-control study in Central America, our aim was to examine the spatial epidemiology of gastric cancer subtypes and H. pylori virulence factors. METHODS: Patients diagnosed with gastric cancer from 2002 to 2013 in western Honduras were identified in the prospective gastric cancer registry at the principal district hospital. Diagnosis was based on endoscopy and confirmatory histopathology. Geospatial methods were applied using the ArcGIS v10.3.1 and SaTScan v9.4.2 platforms to examine regional distributions of the gastric cancer histologic subtypes (Lauren classification), and the H. pylori CagA virulence factor. Getis-Ord-Gi hot spot and Discrete Poisson SaTScan statistics, respectively, were used to explore spatial clustering at the village level (30-50 rural households), with standardization by each village's population. H. pylori and CagA serologic status was determined using the novel H. pylori multiplex assay (DKFZ, Germany). RESULTS: Three hundred seventy-eight incident cases met the inclusion criteria (mean age 63.7, male 66.3%). Areas of higher gastric cancer incidence were identified. Significant spatial clustering of diffuse histology adenocarcinoma was revealed both by the Getis-Ord-GI* hot spot analysis (P-value < 0.0015; range 0.00003-0.0014; 99%CI), and by the SaTScan statistic (P-value < 0.006; range 0.0026-0.0054). The intestinal subtype was randomly distributed. H. pylori CagA had significant spatial clustering only in association with the diffuse histology cancer hot spot (Getis-Ord-Gi* P value ≤0.001; range 0.0001-0.0010; SaTScan statistic P value 0.0085). In the diffuse gastric cancer hot spot, the lowest age quartile range was 21-46 years, significantly lower than the intestinal cancers (P = 0.024). CONCLUSIONS: Geospatial methods have identified a significant cluster of incident diffuse type adenocarcinoma cases in rural Central America, suggest of a germline genetic association. Further genomic and geospatial analyses to identify potential spatial patterns of genetic, bacterial, and environmental risk factors may be informative.


Assuntos
Saúde da População Rural , Neoplasias Gástricas/epidemiologia , Idoso , Estudos de Casos e Controles , América Central/epidemiologia , Suscetibilidade a Doenças , Feminino , Geografia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Helicobacter pylori , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , Análise Espacial , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/patologia
18.
Helicobacter ; 24(4): e12595, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31111610

RESUMO

BACKGROUND: Antimicrobial resistance is a global public health problem, particularly in low- and middle-income countries (LMICs), where antibiotics are often obtained without a prescription. H. pylori antimicrobial resistance patterns are informative for patient care and gastric cancer prevention programs, have been shown to correlate with general antimicrobial consumption, and may guide antimicrobial stewardship programs in LMICs. We report H. pylori resistance and antimicrobial utilization patterns for western Honduras, representative of rural Central America. METHODS: In the context of the western Honduras gastric cancer epidemiology initiative, gastric biopsies from 189 patients were studied for culture and resistance patterns. Antimicrobial utilization was investigated for common H. pylori treatment regimens from regional public (7 antimicrobials) and national private (4 antimicrobials) data, analyzed in accordance with WHO anatomical therapeutic chemical defined daily doses (DDD) method and expressed as DDD/1000 inhabitants per day (DID) and per year (DIY). RESULTS: H. pylori was successfully cultured from 116 patients (56% males, mean age: 54), and nearly all strains were cagA+ and vacAs1m1+ positive (99% and 90.4%, respectively). Unexpectedly, high resistance was noted for levofloxacin (20.9%) and amoxicillin (10.7%), while metronidazole (67.9%) and clarithromycin (11.2%) were similar to data from Latin America. Significant associations with age, gender, or histology were not noted, with the exception of levofloxacin (28%, P = 0.01) in those with histology limited to non-atrophic gastritis. Total antimicrobial usage in western Honduras of amoxicillin (17.3 DID) and the quinolones had the highest relative utilizations compared with other representative nations. CONCLUSIONS: We observed significant H. pylori resistance to amoxicillin and levofloxacin in the context of high community antimicrobial utilization. This has implications in Central America for H. pylori treatment guidelines as well as antimicrobial stewardship programs.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Adulto , Idoso , Amoxicilina/uso terapêutico , América Central , Feminino , Infecções por Helicobacter/microbiologia , Helicobacter pylori/classificação , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Humanos , Levofloxacino/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade
19.
Gut ; 67(7): 1247-1260, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28473630

RESUMO

OBJECTIVE: Gastric cancer is the third leading cause of cancer death worldwide and infection by Helicobacter pylori is the strongest risk factor. We have reported increased epidermal growth factor receptor (EGFR) phosphorylation in the H. pylori-induced human carcinogenesis cascade, and association with DNA damage. Our goal was to determine the role of EGFR activation in gastric carcinogenesis. DESIGN: We evaluated gefitinib, a specific EGFR inhibitor, in chemoprevention of H. pylori-induced gastric inflammation and cancer development. Mice with genetically targeted epithelial cell-specific deletion of Egfr (EfgrΔepi mice) were also used. RESULTS: In C57BL/6 mice, gefitinib decreased Cxcl1 and Cxcl2 expression by gastric epithelial cells, myeloperoxidase-positive inflammatory cells in the mucosa and epithelial DNA damage induced by H. pylori infection. Similar reductions in chemokines, inflammatory cells and DNA damage occurred in infected EgfrΔepi versus Egfrfl/fl control mice. In H. pylori-infected transgenic insulin-gastrin (INS-GAS) mice and gerbils, gefitinib treatment markedly reduced dysplasia and carcinoma. Gefitinib blocked H. pylori-induced activation of mitogen-activated protein kinase 1/3 (MAPK1/3) and activator protein 1 in gastric epithelial cells, resulting in inhibition of chemokine synthesis. MAPK1/3 phosphorylation and JUN activation was reduced in gastric tissues from infected wild-type and INS-GAS mice treated with gefitinib and in primary epithelial cells from EfgrΔepi versus Egfrfl/fl mice. Epithelial EGFR activation persisted in humans and mice after H. pylori eradication, and gefitinib reduced gastric carcinoma in INS-GAS mice treated with antibiotics. CONCLUSIONS: These findings suggest that epithelial EGFR inhibition represents a potential strategy to prevent development of gastric carcinoma in H. pylori-infected individuals.


Assuntos
Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Gastrite/patologia , Infecções por Helicobacter/patologia , Quinazolinas/uso terapêutico , Neoplasias Gástricas/prevenção & controle , Animais , Técnicas de Cultura de Células , Células Epiteliais , Gastrite/microbiologia , Gefitinibe , Gerbillinae , Helicobacter pylori , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
20.
Gut ; 67(7): 1239-1246, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28647684

RESUMO

OBJECTIVE: To evaluate the long-term effect of cumulative time exposed to Helicobacter pylori infection on the progression of gastric lesions. DESIGN: 795 adults with precancerous gastric lesions were randomised to receive anti-H. pylori treatment at baseline. Gastric biopsies were obtained at baseline and at 3, 6, 12 and 16 years. A total of 456 individuals attended the 16-year visit. Cumulative time of H. pylori exposure was calculated as the number of years infected during follow-up. Multivariable logistic regression models were used to estimate the risk of progression to a more advanced diagnosis (versus no change/regression) as well as gastric cancer risk by intestinal metaplasia (IM) subtype. For a more detailed analysis of progression, we also used a histopathology score assessing both severity and extension of the gastric lesions (range 1-6). The score difference between baseline and 16 years was modelled by generalised linear models. RESULTS: Individuals who were continuously infected with H. pylori for 16 years had a higher probability of progression to a more advanced diagnosis than those who cleared the infection and remained negative after baseline (p=0.001). Incomplete-type IM was associated with higher risk of progression to cancer than complete-type (OR, 11.3; 95% CI 1.4 to 91.4). The average histopathology score increased by 0.20 units/year (95% CI 0.12 to 0.28) among individuals continuously infected with H. pylori. The effect of cumulative time of infection on progression in the histopathology score was significantly higher for individuals with atrophy (without IM) than for individuals with IM (p<0.001). CONCLUSIONS: Long-term exposure to H. pylori infection was associated with progression of precancerous lesions. Individuals infected with H. pylori with these lesions may benefit from eradication, particularly those with atrophic gastritis without IM. Incomplete-type IM may be a useful marker for the identification of individuals at higher risk for cancer.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/patologia , Lesões Pré-Cancerosas/microbiologia , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/microbiologia , Adulto , Idoso , Progressão da Doença , Esquema de Medicação , Feminino , Seguimentos , Infecções por Helicobacter/complicações , Helicobacter pylori , Humanos , Masculino , Metaplasia , Pessoa de Meia-Idade , Fatores de Risco , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA