RESUMO
High concentrations of propionate and its metabolites are found in several diseases that are often associated with the development of cardiac dysfunction, such as obesity, diabetes, propionic acidemia, and methylmalonic acidemia. In the present work, we employed a stable isotope-based metabolic flux approach to understand propionate-mediated perturbation of cardiac energy metabolism. Propionate led to accumulation of propionyl-CoA (increased by ~101-fold) and methylmalonyl-CoA (increased by 36-fold). This accumulation caused significant mitochondrial CoA trapping and inhibited fatty acid oxidation. The reduced energy contribution from fatty acid oxidation was associated with increased glucose oxidation. The enhanced anaplerosis of propionate and CoA trapping altered the pool sizes of tricarboxylic acid cycle (TCA) metabolites. In addition to being an anaplerotic substrate, the accumulation of proprionate-derived malate increased the recycling of malate to pyruvate and acetyl-CoA, which can enter the TCA for energy production. Supplementation of 3 mM l-carnitine did not relieve CoA trapping and did not reverse the propionate-mediated fuel switch. This is due to new findings that the heart appears to lack the specific enzyme catalyzing the conversion of short-chain (C3 and C4) dicarboxylyl-CoAs to dicarboxylylcarnitines. The discovery of this work warrants further investigation on the relevance of dicarboxylylcarnitines, especially C3 and C4 dicarboxylylcarnitines, in cardiac conditions such as heart failure.
Assuntos
Carnitina/farmacologia , Coenzima A/metabolismo , Metabolismo Energético/efeitos dos fármacos , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Propionatos/metabolismo , Acetilcoenzima A/metabolismo , Acil Coenzima A/metabolismo , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Preparação de Coração Isolado , Fígado/metabolismo , Malatos/metabolismo , Masculino , Análise do Fluxo Metabólico , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Oxirredução/efeitos dos fármacos , Ácido Pirúvico/metabolismo , RatosRESUMO
Propionate, 3-hydroxypropionate (3HP), methylcitrate, related compounds, and ammonium accumulate in body fluids of patients with disorders of propionyl-CoA metabolism, such as propionic acidemia. Although liver transplantation alleviates hyperammonemia, high concentrations of propionate, 3HP, and methylcitrate persist in body fluids. We hypothesized that conserved metabolic perturbations occurring in transplanted patients result from the simultaneous presence of propionate and 3HP in body fluids. We investigated the inter-relations of propionate and 3HP metabolism in perfused livers from normal rats using metabolomic and stable isotopic technologies. In the presence of propionate, 3HP, or both, we observed the following metabolic perturbations. First, the citric acid cycle (CAC) is overloaded but does not provide sufficient reducing equivalents to the respiratory chain to maintain the homeostasis of adenine nucleotides. Second, there is major CoA trapping in the propionyl-CoA pathway and a tripling of liver total CoA within 1 h. Third, liver proteolysis is stimulated. Fourth, propionate inhibits the conversion of 3HP to acetyl-CoA and its oxidation in the CAC. Fifth, some propionate and some 3HP are converted to nephrotoxic maleate by different processes. Our data have implications for the clinical management of propionic acidemia. They also emphasize the perturbations of the liver intermediary metabolism induced by supraphysiological, i.e., millimolar, concentrations of labeled propionate used to trace the intermediary metabolism, in particular, inhibition of CAC flux and major decreases in the [ATP]/[ADP] and [ATP]/[AMP] ratios.
Assuntos
Acil Coenzima A/metabolismo , Ácido Láctico/análogos & derivados , Fígado/metabolismo , Propionatos/metabolismo , Compostos de Amônio/metabolismo , Animais , Isótopos de Carbono , Citratos/metabolismo , Ciclo do Ácido Cítrico , Ácido Láctico/metabolismo , Transplante de Fígado , Masculino , Oxirredução , Acidemia Propiônica/metabolismo , Acidemia Propiônica/cirurgia , Proteólise , Ratos , Ratos Sprague-DawleyRESUMO
Pyruvate dehydrogenase complex deficiencies (PDCDs) and other mitochondrial disorders (MtDs) can (a) result in congenital lactic acidosis with elevations of blood alanine (Ala) and proline (Pro), (b) lead to decreased ATP production, and (c) result in high morbidity and mortality. With ~140,000 live births annually in Ohio and ~1 in 9,000 overall prevalence of MtDs, we estimate 2 to 3 newborns will have PDCD and 13 to 14 others likely will have another MtD annually. We compared the sensitivities of plasma amino acids (AA) Alanine (Ala), Alanine:Leucine (Ala:Leu), Alanine:Lysine and the combination of Ala:Leu and Proline:Leucine (Pro:Leu), in subjects with known primary-specific PDCD due to PDHA1 and PDHB mutations vs controls. Furthermore, in collaboration with the Ohio newborn screening (NBS) laboratory, we determined Ala and Pro concentrations in dried blood spot (DBS) specimens using existing NBS analytic approaches and evaluated Ala:Leu and Pro:Leu ratios from DBS specimens of 123,414 Ohio newborns in a 12-month period. We used the combined Ala:Leu ≥4.0 and Pro:Leu ≥3.0 ratio criterion from both DBS and plasma specimens as a screening tool in our retrospective review of newborn data. The screening tool applied on DBS and/or plasma (or serum) AA specimens successfully identified three unrelated females with novel de novo PDHA1 mutations, one male with a novel de novo X-linked HSD17B10 mutation, and a female with VARS2 mutations. This work lays the first step for piloting an NBS protocol in Ohio for identifying newborns at high risk for primary-specific PDCD and other MtDs who might benefit from neonatal diagnosis and early institution of known therapy and/or potential novel therapies for such disorders.
RESUMO
The RAB27A/Melanophilin/Myosin-5a tripartite protein complex is required for capturing mature melanosomes in the peripheral actin network of melanocytes for subsequent transfer to keratinocytes. Mutations in any one member of this tripartite complex cause three forms of Griscelli syndrome (GS), each with distinct clinical features but with a similar cellular phenotype. To date, only one case of GS type III (GSIII), caused by mutations in the Melanophilin (MLPH) gene, has been reported. Here, we report seven new cases of GSIII in three distinct Arab pedigrees. All affected individuals carried a homozygous missense mutation (c.102C>T; p.R35W), located in the conserved Slp homology domain of MLPH, and had hypomelanosis of the skin and hair. We report the first cellular studies on GSIII melanocytes, which demonstrated that MLPH(R35W) causes perinuclear aggregation of melanosomes in melanocytes, typical for GS. Additionally, co-immunoprecipitation assays showed that MLPH(R35W) lost its interaction with RAB27A, indicating pathogenicity of the R35W mutation.
Assuntos
Cor de Cabelo/genética , Melanossomas/metabolismo , Mutação de Sentido Incorreto , Piebaldismo/genética , Transtornos da Pigmentação/genética , Mutação Puntual , Proteínas rab de Ligação ao GTP/fisiologia , Adolescente , Substituição de Aminoácidos , Árabes/genética , Criança , Pré-Escolar , Consanguinidade , Feminino , Humanos , Masculino , Melanócitos/metabolismo , Melanócitos/ultraestrutura , Melanossomas/ultraestrutura , Linhagem , Piebaldismo/etnologia , Piebaldismo/patologia , Transtornos da Pigmentação/etnologia , Transtornos da Pigmentação/patologia , Mapeamento de Interação de Proteínas , Adulto Jovem , Proteínas rab27 de Ligação ao GTPRESUMO
UNLABELLED: Previous studies have identified subclinical lung disease in family members of probands with familial pulmonary fibrosis, but the natural history of preclinical pulmonary fibrosis is uncertain. The purpose of this study was to determine whether individuals with preclinical lung disease will develop pulmonary fibrosis. After a 27-year interval, two subjects with manifestations of preclinical familial pulmonary fibrosis, including asymptomatic alveolar inflammation and alveolar macrophage activation, were reevaluated for lung disease. CT scans of the chest, pulmonary function tests, and BAL were performed, and genomic DNA was analyzed for mutations in candidate genes associated with familial pulmonary fibrosis. One subject developed symptomatic familial pulmonary fibrosis and was treated with oxygen; her sister remained asymptomatic but had findings of pulmonary fibrosis on high-resolution CT scan of the chest. High concentrations of lymphocytes were found in BAL fluid from both subjects. Genetic sequencing and analyses identified a novel heterozygous mutation in telomerase reverse transcriptase (TERT, R1084P), resulting in telomerase dysfunction and short telomeres in both subjects. In familial pulmonary fibrosis, asymptomatic preclinical alveolar inflammation associated with mutation in TERT and telomerase insufficiency can progress to fibrotic lung disease over 2 to 3 decades. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00071045; URL: www.clinicaltrials.gov.