Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMJ Paediatr Open ; 8(1)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343446

RESUMO

BACKGROUND: Neonatal hyperbilirubinaemia (NH) is a common problem worldwide and is a cause of morbidity and mortality especially in low-resource settings. METHODS: A study was carried out at Shoklo Malaria Research Unit (SMRU) clinics along the Thailand-Myanmar border to evaluate a non-invasive test for diagnosis of NH in a low-resource setting. Performance of a transcutaneous bilirubinometer Dräger Jaundice Meter JM-105 was assessed against routine capillary serum bilirubin testing (with BR-501 microbilirubinometer) before phototherapy during neonatal care in the first week of life. Results were analysed by direct agreement and by various bilirubin thresholds used in clinical practice. Total serum bilirubin was also measured in cord blood at birth and tested for prediction of hyperbilirubinaemia requiring phototherapy in the first week of life. RESULTS: Between April 2020 and May 2023, 742 neonates born at SMRU facilities were included in the study. A total of 695 neonates provided one to nine capillary blood samples for analysis of serum bilirubin (total 1244 tests) during the first week of life. Performance of transcutaneous bilirubinometer was assessed in 307 neonates who provided 687 paired transcutaneous capillary blood tests. Bilirubin levels were also measured in 738 cord blood samples. Adjusted values of transcutaneous bilirubinometer showed excellent agreement with capillary serum bilirubin concentration (intraclass correlation coefficient=0.923) and high sensitivity (>98%) at all clinical thresholds analysed across 3 years of sampling and multiple users. Concentrations of bilirubin detected in cord blood were not useful in identifying neonates at risk of hyperbilirubinaemia requiring treatment. CONCLUSIONS: The transcutaneous bilirubinometer is a reliable tool to screen neonates and identify those needing confirmatory blood testing. Bilirubin concentrations in cord blood are not predictive of hyperbilirubinaemia in neonates.


Assuntos
Bilirrubina , Hiperbilirrubinemia Neonatal , Humanos , Recém-Nascido , Bilirrubina/sangue , Bilirrubina/análise , Tailândia , Hiperbilirrubinemia Neonatal/diagnóstico , Hiperbilirrubinemia Neonatal/sangue , Mianmar , Feminino , Masculino , Triagem Neonatal/métodos , Triagem Neonatal/instrumentação , Sangue Fetal/química , Fototerapia
2.
BMJ Open ; 12(12): e066529, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36523222

RESUMO

OBJECTIVES: New point-of-care (POC) quantitative G6PD testing devices developed to provide safe radical cure for Plasmodium vivax malaria may be used to diagnose G6PD deficiency in newborns at risk of severe neonatal hyperbilirubinaemia, improving clinical care, and preventing related morbidity and mortality. METHODS: We conducted a mixed-methods study analysing technical performance and usability of the 'STANDARD G6PD' Biosensor when used by trained midwives on cord blood samples at two rural clinics on the Thailand-Myanmar border. RESULTS: In 307 cord blood samples, the Biosensor had a sensitivity of 1.000 (95% CI: 0.859 to 1.000) and a specificity of 0.993 (95% CI: 0.971 to 0.999) as compared with gold-standard spectrophotometry to diagnose G6PD-deficient newborns using a receiver operating characteristic (ROC) analysis-derived threshold of ≤4.8 IU/gHb. The Biosensor had a sensitivity of 0.727 (95% CI: 0.498 to 0.893) and specificity of 0.933 (95% CI: 0.876 to 0.969) for 30%-70% activity range in girls using ROC analysis-derived range of 4.9-9.9 IU/gHb. These thresholds allowed identification of all G6PD-deficient neonates and 80% of female neonates with intermediate phenotypes.Need of phototherapy treatment for neonatal hyperbilirubinaemia was higher in neonates with deficient and intermediate phenotypes as diagnosed by either reference spectrophotometry or Biosensor.Focus group discussions found high levels of learnability, willingness, satisfaction and suitability for the Biosensor in this setting. The staff valued the capacity of the Biosensor to identify newborns with G6PD deficiency early ('We can know that early, we can counsel the parents about the chances of their children getting jaundice') and at the POC, including in more rural settings ('Because we can know the right result of the G6PD deficiency in a short time, especially for the clinic which does not have a lab'). CONCLUSIONS: The Biosensor is a suitable tool in this resource-constrained setting to identify newborns with abnormal G6PD phenotypes at increased risk of neonatal hyperbilirubinaemia.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Hiperbilirrubinemia Neonatal , Malária Vivax , Oxibato de Sódio , Humanos , Recém-Nascido , Feminino , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Sangue Fetal , Oxibato de Sódio/uso terapêutico , Malária Vivax/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA