Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 619(7970): 585-594, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468583

RESUMO

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Assuntos
Perfilação da Expressão Gênica , Nefropatias , Rim , Análise de Célula Única , Transcriptoma , Humanos , Núcleo Celular/genética , Rim/citologia , Rim/lesões , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Transcriptoma/genética , Estudos de Casos e Controles , Imageamento Tridimensional
2.
Biochemistry ; 63(18): 2310-2322, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194960

RESUMO

HYPOTHESIS: In this communication, we test the hypothesis that sulfotransferase 1C2 (SULT1C2, UniProt accession no. Q9WUW8) can modulate mitochondrial respiration by increasing state-III respiration. METHODS AND RESULTS: Using freshly isolated mitochondria, the addition of SULT1C2 and 3-phosphoadenosine 5 phosphosulfate (PAPS) results in an increased maximal respiratory capacity in response to the addition of succinate, ADP, and rotenone. Lipidomics and thin-layer chromatography of mitochondria treated with SULT1C2 and PAPS showed an increase in the level of cholesterol sulfate. Notably, adding cholesterol sulfate at nanomolar concentration to freshly isolated mitochondria also increases maximal respiratory capacity. In vivo studies utilizing gene delivery of SULT1C2 expression plasmids to kidneys result in increased mitochondrial membrane potential and confer resistance to ischemia/reperfusion injury. Mitochondria isolated from gene-transduced kidneys have elevated state-III respiration as compared with controls, thereby recapitulating results obtained with mitochondrial fractions treated with SULT1C2 and PAPS. CONCLUSION: SULT1C2 increases mitochondrial respiratory capacity by modifying cholesterol, resulting in increased membrane potential and maximal respiratory capacity. This finding uncovers a unique role of SULT1C2 in cellular physiology and extends the role of sulfotransferases in modulating cellular metabolism.


Assuntos
Ésteres do Colesterol , Colesterol , Mitocôndrias , Membranas Mitocondriais , Sulfotransferases , Animais , Colesterol/metabolismo , Sulfotransferases/metabolismo , Sulfotransferases/genética , Mitocôndrias/metabolismo , Ésteres do Colesterol/metabolismo , Membranas Mitocondriais/metabolismo , Camundongos , Respiração Celular/fisiologia , Respiração Celular/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Rim/metabolismo , Camundongos Endogâmicos C57BL
3.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L711-L725, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814796

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.


Assuntos
Quimiocina CX3CL1 , Enfisema Pulmonar , Animais , Humanos , Camundongos , alfa 1-Antitripsina/farmacologia , Comunicação Celular , Receptor 1 de Quimiocina CX3C/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Inflamação/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Monócitos , Enfisema Pulmonar/metabolismo
4.
Lab Invest ; 103(6): 100104, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36867975

RESUMO

The human kidney is a complex organ with various cell types that are intricately organized to perform key physiological functions and maintain homeostasis. New imaging modalities, such as mesoscale and highly multiplexed fluorescence microscopy, are increasingly being applied to human kidney tissue to create single-cell resolution data sets that are both spatially large and multidimensional. These single-cell resolution high-content imaging data sets have great potential to uncover the complex spatial organization and cellular makeup of the human kidney. Tissue cytometry is a novel approach used for the quantitative analysis of imaging data; however, the scale and complexity of such data sets pose unique challenges for processing and analysis. We have developed the Volumetric Tissue Exploration and Analysis (VTEA) software, a unique tool that integrates image processing, segmentation, and interactive cytometry analysis into a single framework on desktop computers. Supported by an extensible and open-source framework, VTEA's integrated pipeline now includes enhanced analytical tools, such as machine learning, data visualization, and neighborhood analyses, for hyperdimensional large-scale imaging data sets. These novel capabilities enable the analysis of mesoscale 2- and 3-dimensional multiplexed human kidney imaging data sets (such as co-detection by indexing and 3-dimensional confocal multiplexed fluorescence imaging). We demonstrate the utility of this approach in identifying cell subtypes in the kidney on the basis of labels, spatial association, and their microenvironment or neighborhood membership. VTEA provides an integrated and intuitive approach to decipher the cellular and spatial complexity of the human kidney and complements other transcriptomics and epigenetic efforts to define the landscape of kidney cell types.


Assuntos
Imageamento Tridimensional , Rim , Humanos , Rim/diagnóstico por imagem , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Aprendizado de Máquina
5.
Am J Physiol Renal Physiol ; 323(2): F212-F226, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759740

RESUMO

Sepsis is a significant cause of mortality in hospitalized patients. Concomitant development of acute kidney injury (AKI) increases sepsis mortality through unclear mechanisms. Although electrolyte disturbances and toxic metabolite buildup during AKI could be important, it is possible that the kidney produces a protective molecule lost during sepsis with AKI. We have previously demonstrated that systemic Tamm-Horsfall protein (THP; uromodulin), a kidney-derived protein with immunomodulatory properties, falls in AKI. Using a mouse sepsis model without severe kidney injury, we showed that the kidney increases circulating THP by enhancing the basolateral release of THP from medullary thick ascending limb cells. In patients with sepsis, changes in circulating THP were positively associated with a critical illness. THP was also found de novo in injured lungs. Genetic ablation of THP in mice led to increased mortality and bacterial burden during sepsis. Consistent with the increased bacterial burden, the presence of THP in vitro and in vivo led macrophages and monocytes to upregulate a transcriptional program promoting cell migration, phagocytosis, and chemotaxis, and treatment of macrophages with purified THP increases phagocytosis. Rescue of septic THP-/- mice with exogenous systemic THP improved survival. Together, these findings suggest that through releasing THP, the kidney modulates the immune response in sepsis by enhancing mononuclear phagocyte function, and systemic THP has therapeutic potential in sepsis.NEW & NOTEWORTHY Specific therapies to improve outcomes in sepsis with kidney injury have been limited by an unclear understanding of how kidney injury increases sepsis mortality. Here, we identified Tamm-Horsfall protein, known to protect in ischemic acute kidney injury, as protective in preclinical sepsis models. Tamm-Horsfall protein also increased in clinical sepsis without severe kidney injury and concentrated in injured organs. Further study could lead to novel sepsis therapeutics.


Assuntos
Injúria Renal Aguda , Sepse , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Modelos Animais de Doenças , Rim/metabolismo , Sepse/complicações , Sepse/metabolismo , Uromodulina/genética , Uromodulina/metabolismo
6.
Physiol Genomics ; 53(1): 1-11, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197228

RESUMO

Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.


Assuntos
Guias como Assunto , Rim/patologia , Medicina de Precisão , Biópsia , Humanos , Reprodutibilidade dos Testes
7.
Am J Physiol Renal Physiol ; 321(6): F675-F688, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658261

RESUMO

Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.


Assuntos
Indóis/toxicidade , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Naftalenos/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Cisplatino , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Rim/enzimologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/enzimologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Vasos Linfáticos/enzimologia , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Lab Invest ; 101(9): 1186-1196, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34017058

RESUMO

The lymphatic system plays an integral role in physiology and has recently been identified as a key player in disease progression. Tissue injury stimulates lymphatic expansion, or lymphangiogenesis (LA), though its precise role in disease processes remains unclear. LA is associated with inflammation, which is a key component of acute kidney injury (AKI), for which there are no approved therapies. While LA research has gained traction in the last decade, there exists a significant lack of understanding of this process in the kidney. Though innovative studies have elucidated markers and models with which to study LA, the field is still evolving with ways to visualize lymphatics in vivo. Prospero-related homeobox-1 (Prox-1) is the master regulator of LA and determines lymphatic cell fate through its action on vascular endothelial growth factor receptor expression. Here, we investigate the consequences of AKI on the abundance and distribution of lymphatic endothelial cells using Prox1-tdTomato reporter mice (ProxTom) coupled with large-scale three-dimensional quantitative imaging and tissue cytometry (3DTC). Using these technologies, we describe the spatial dynamics of lymphatic vasculature in quiescence and post-AKI. We also describe the use of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) as a marker of lymphatic vessels using 3DTC in the absence of the ProxTom reporter mice as an alternative approach. The use of 3DTC for lymphatic research presents a new avenue with which to study the origin and distribution of renal lymphatic vessels. These findings will enhance our understanding of renal lymphatic function during injury and could inform the development of novel therapeutics for intervention in AKI.


Assuntos
Injúria Renal Aguda , Citometria por Imagem , Imageamento Tridimensional , Vasos Linfáticos , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/metabolismo , Animais , Proteínas de Homeodomínio/metabolismo , Linfangiogênese , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Supressoras de Tumor/metabolismo
9.
Lab Invest ; 101(5): 661-676, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33408350

RESUMO

The advent of personalized medicine has driven the development of novel approaches for obtaining detailed cellular and molecular information from clinical tissue samples. Tissue cytometry is a promising new technique that can be used to enumerate and characterize each cell in a tissue and, unlike flow cytometry and other single-cell techniques, does so in the context of the intact tissue, preserving spatial information that is frequently crucial to understanding a cell's physiology, function, and behavior. However, the wide-scale adoption of tissue cytometry as a research tool has been limited by the fact that published examples utilize specialized techniques that are beyond the capabilities of most laboratories. Here we describe a complete and accessible pipeline, including methods of sample preparation, microscopy, image analysis, and data analysis for large-scale three-dimensional tissue cytometry of human kidney tissues. In this workflow, multiphoton microscopy of unlabeled tissue is first conducted to collect autofluorescence and second-harmonic images. The tissue is then labeled with eight fluorescent probes, and imaged using spectral confocal microscopy. The raw 16-channel images are spectrally deconvolved into 8-channel images, and analyzed using the Volumetric Tissue Exploration and Analysis (VTEA) software developed by our group. We applied this workflow to analyze millimeter-scale tissue samples obtained from human nephrectomies and from renal biopsies from individuals diagnosed with diabetic nephropathy, generating a quantitative census of tens of thousands of cells in each. Such analyses can provide useful insights that can be linked to the biology or pathology of kidney disease. The approach utilizes common laboratory techniques, is compatible with most commercially-available confocal microscope systems and all image and data analysis is conducted using the VTEA image analysis software, which is available as a plug-in for ImageJ.


Assuntos
Técnicas Citológicas , Imageamento Tridimensional , Rim/citologia , Microscopia de Fluorescência por Excitação Multifotônica , Software , Corantes Fluorescentes , Humanos , Microscopia Confocal
10.
Cytometry A ; 99(7): 707-721, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33252180

RESUMO

To understand the physiology and pathology of disease, capturing the heterogeneity of cell types within their tissue environment is fundamental. In such an endeavor, the human kidney presents a formidable challenge because its complex organizational structure is tightly linked to key physiological functions. Advances in imaging-based cell classification may be limited by the need to incorporate specific markers that can link classification to function. Multiplex imaging can mitigate these limitations, but requires cumulative incorporation of markers, which may lead to tissue exhaustion. Furthermore, the application of such strategies in large scale 3-dimensional (3D) imaging is challenging. Here, we propose that 3D nuclear signatures from a DNA stain, DAPI, which could be incorporated in most experimental imaging, can be used for classifying cells in intact human kidney tissue. We developed an unsupervised approach that uses 3D tissue cytometry to generate a large training dataset of nuclei images (NephNuc), where each nucleus is associated with a cell type label. We then devised various supervised machine learning approaches for kidney cell classification and demonstrated that a deep learning approach outperforms classical machine learning or shape-based classifiers. Specifically, a custom 3D convolutional neural network (NephNet3D) trained on nuclei image volumes achieved a balanced accuracy of 80.26%. Importantly, integrating NephNet3D classification with tissue cytometry allowed in situ visualization of cell type classifications in kidney tissue. In conclusion, we present a tissue cytometry and deep learning approach for in situ classification of cell types in human kidney tissue using only a DNA stain. This methodology is generalizable to other tissues and has potential advantages on tissue economy and non-exhaustive classification of different cell types.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Rim , Coloração e Rotulagem , Aprendizado de Máquina Supervisionado
11.
Nephrol Dial Transplant ; 37(1): 72-84, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33537765

RESUMO

BACKGROUND: Idiopathic nodular mesangial sclerosis, also called idiopathic nodular glomerulosclerosis (ING), is a rare clinical entity with an unclear pathogenesis. The hallmark of this disease is the presence of nodular mesangial sclerosis on histology without clinical evidence of diabetes mellitus or other predisposing diagnoses. To achieve insights into its pathogenesis, we queried the clinical, histopathologic and transcriptomic features of ING and nodular diabetic nephropathy (DN). METHODS: All renal biopsy reports accessioned at Indiana University Health from 2001 to 2016 were reviewed to identify 48 ING cases. Clinical and histopathologic features were compared between individuals with ING and DN (n = 751). Glomeruli of ING (n = 5), DN (n = 18) and reference (REF) nephrectomy (n = 9) samples were isolated by laser microdissection and RNA was sequenced. Immunohistochemistry of proline-rich 36 (PRR36) protein was performed. RESULTS: ING subjects were frequently hypertensive (95.8%) with a smoking history (66.7%). ING subjects were older, had lower proteinuria and had less hyaline arteriolosclerosis than DN subjects. Butanoate metabolism was an enriched pathway in ING samples compared with either REF or DN samples. The top differentially expressed gene, PRR36, had increased expression in glomeruli 248-fold [false discovery rate (FDR) P = 5.93 × 10-6] compared with the REF and increased 109-fold (FDR P = 1.85 × 10-6) compared with DN samples. Immunohistochemistry revealed a reduced proportion of cells with perinuclear reaction in ING samples as compared to DN. CONCLUSIONS: Despite similar clinical and histopathologic characteristics in ING and DN, the uncovered transcriptomic signature suggests that ING has distinct molecular features from nodular DN. Further study is warranted to understand these relationships.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Síndrome Nefrótica , Diabetes Mellitus/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Humanos , Glomérulos Renais/patologia , Síndrome Nefrótica/patologia , Proteinúria/patologia , Esclerose/patologia
12.
PLoS Pathog ; 14(8): e1007244, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102746

RESUMO

The early events that shape the innate immune response to restrain pathogens during skin infections remain elusive. Methicillin-resistant Staphylococcus aureus (MRSA) infection engages phagocyte chemotaxis, abscess formation, and microbial clearance. Upon infection, neutrophils and monocytes find a gradient of chemoattractants that influence both phagocyte direction and microbial clearance. The bioactive lipid leukotriene B4 (LTB4) is quickly (seconds to minutes) produced by 5-lipoxygenase (5-LO) and signals through the G protein-coupled receptors LTB4R1 (BLT1) or BLT2 in phagocytes and structural cells. Although it is known that LTB4 enhances antimicrobial effector functions in vitro, whether prompt LTB4 production is required for bacterial clearance and development of an inflammatory milieu necessary for abscess formation to restrain pathogen dissemination is unknown. We found that LTB4 is produced in areas near the abscess and BLT1 deficient mice are unable to form an abscess, elicit neutrophil chemotaxis, generation of neutrophil and monocyte chemokines, as well as reactive oxygen species-dependent bacterial clearance. We also found that an ointment containing LTB4 synergizes with antibiotics to eliminate MRSA potently. Here, we uncovered a heretofore unknown role of macrophage-derived LTB4 in orchestrating the chemoattractant gradient required for abscess formation, while amplifying antimicrobial effector functions.


Assuntos
Abscesso/imunologia , Carga Bacteriana/imunologia , Leucotrieno B4/fisiologia , Macrófagos/metabolismo , Staphylococcus aureus Resistente à Meticilina , Infecções Cutâneas Estafilocócicas/imunologia , Abscesso/genética , Abscesso/microbiologia , Abscesso/patologia , Animais , Araquidonato 5-Lipoxigenase/genética , Carga Bacteriana/genética , Células Cultivadas , Feminino , Leucotrieno B4/metabolismo , Macrófagos/imunologia , Masculino , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores do Leucotrieno B4/genética , Infecções Cutâneas Estafilocócicas/genética , Infecções Cutâneas Estafilocócicas/patologia
13.
Microvasc Res ; 123: 7-13, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30502365

RESUMO

Microvascular perfusion dynamics are vital to physiological function and are frequently dysregulated in injury and disease. Typically studies measure microvascular flow in a few selected vascular segments over limited time, failing to capture spatial and temporal variability. To quantify microvascular flow in a more complete and unbiased way we developed STAFF (Spatial Temporal Analysis of Fieldwise Flow), a macro for FIJI open-source image analysis software. Using high-speed microvascular flow movies, STAFF generates kymographs for every time interval for every vascular segment, calculates flow velocities from red blood cell shadow angles, and outputs the data as color-coded velocity map movies and spreadsheets. In untreated mice, analyses demonstrated profound variation even between adjacent sinusoids over seconds. In acetaminophen-treated mice we detected flow reduction localized to pericentral regions. STAFF is a powerful new tool capable of providing novel insights by enabling measurement of the complex spatiotemporal dynamics of microvascular flow.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Hemodinâmica , Interpretação de Imagem Assistida por Computador/métodos , Microscopia Intravital/métodos , Circulação Hepática , Fígado/irrigação sanguínea , Microcirculação , Microvasos/fisiopatologia , Imagem com Lapso de Tempo/métodos , Acetaminofen , Animais , Automação , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Eritrócitos , Quimografia , Masculino , Camundongos Endogâmicos C57BL , Fluxo Sanguíneo Regional , Software , Análise Espaço-Temporal , Fatores de Tempo
14.
J Am Soc Nephrol ; 29(3): 841-856, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29180395

RESUMO

Tamm-Horsfall protein (THP), also known as uromodulin, is a kidney-specific protein produced by cells of the thick ascending limb of the loop of Henle. Although predominantly secreted apically into the urine, where it becomes highly polymerized, THP is also released basolaterally, toward the interstitium and circulation, to inhibit tubular inflammatory signaling. Whether, through this latter route, THP can also regulate the function of renal interstitial mononuclear phagocytes (MPCs) remains unclear, however. Here, we show that THP is primarily in a monomeric form in human serum. Compared with wild-type mice, THP-/- mice had markedly fewer MPCs in the kidney. A nonpolymerizing, truncated form of THP stimulated the proliferation of human macrophage cells in culture and partially restored the number of kidney MPCs when administered to THP-/- mice. Furthermore, resident renal MPCs had impaired phagocytic activity in the absence of THP. After ischemia-reperfusion injury, THP-/- mice, compared with wild-type mice, exhibited aggravated injury and an impaired transition of renal macrophages toward an M2 healing phenotype. However, treatment of THP-/- mice with truncated THP after ischemia-reperfusion injury mitigated the worsening of AKI. Taken together, our data suggest that interstitial THP positively regulates mononuclear phagocyte number, plasticity, and phagocytic activity. In addition to the effect of THP on the epithelium and granulopoiesis, this new immunomodulatory role could explain the protection conferred by THP during AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Fagócitos/efeitos dos fármacos , Fagócitos/fisiologia , Uromodulina/genética , Uromodulina/metabolismo , Injúria Renal Aguda/etiologia , Animais , Plasticidade Celular/genética , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Humanos , Rim/patologia , Camundongos , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/complicações , Uromodulina/química , Uromodulina/farmacologia , Uromodulina/uso terapêutico
15.
J Am Soc Nephrol ; 29(4): 1154-1164, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29371417

RESUMO

Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine (P<0.05) observed in controls and increased the mitochondria membrane potential (P<0.05), maximal respiratory capacity (P<0.05), and intracellular ATP levels (P<0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning.


Assuntos
Precondicionamento Isquêmico , Isocitrato Desidrogenase/genética , Rim/irrigação sanguínea , Trifosfato de Adenosina/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Creatinina/sangue , Vetores Genéticos/administração & dosagem , Injeções Intravenosas , Isocitrato Desidrogenase/fisiologia , Túbulos Renais Proximais/citologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Recidiva , Transfecção , Regulação para Cima
17.
Methods ; 128: 95-104, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28434902

RESUMO

Intravital microscopy (IVM) is an imaging tool that is capable of detecting subcellular signaling or metabolic events as they occur in tissues in the living animal. Imaging in highly scattering biological tissues, however, is challenging because of the attenuation of signal in images acquired at increasing depths. Depth-dependent signal attenuation is the major impediment to IVM, limiting the depth from which significant data can be obtained. Therefore, making quantitative measurements by IVM requires methods that use internal calibration, or alternatively, a completely different way of evaluating the signals. Here, we describe how ratiometric imaging of genetically encoded biosensor probes can be used to make quantitative measurements of changes in the activity of cell signaling pathways. Then, we describe how fluorescence lifetime imaging can be used for label-free measurements of the metabolic states of cells within the living animal.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes , Microscopia Intravital/métodos , Rim/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Células HEK293 , Humanos , Rim/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia
18.
Methods ; 128: 33-39, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28410977

RESUMO

Two-photon intravital microscopy is a powerful tool that allows the examination of dynamic cellular processes in the live animal with unprecedented resolution. Indeed, it offers the ability to address unique biological questions that may not be solved by other means. While two-photon intravital microscopy has been successfully applied to study many organs, the kidney presents its own unique challenges that need to be overcome in order to optimize and validate imaging data. For kidney imaging, the complexity of renal architecture and salient autofluorescence merit special considerations as these elements directly impact image acquisition and data interpretation. Here, using illustrative cases, we provide practical guides and discuss issues that may arise during two-photon live imaging of the rodent kidney.


Assuntos
Corantes Fluorescentes , Microscopia Intravital/métodos , Rim/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem com Lapso de Tempo/métodos , Animais , Rim/citologia , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
J Am Soc Nephrol ; 28(7): 2108-2118, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28154201

RESUMO

Analysis of the immune system in the kidney relies predominantly on flow cytometry. Although powerful, the process of tissue homogenization necessary for flow cytometry analysis introduces bias and results in the loss of morphologic landmarks needed to determine the spatial distribution of immune cells. An ideal approach would support three-dimensional (3D) tissue cytometry: an automated quantitation of immune cells and associated spatial parameters in 3D image volumes collected from intact kidney tissue. However, widespread application of this approach is limited by the lack of accessible software tools for digital analysis of large 3D microscopy data. Here, we describe Volumetric Tissue Exploration and Analysis (VTEA) image analysis software designed for efficient exploration and quantitative analysis of large, complex 3D microscopy datasets. In analyses of images collected from fixed kidney tissue, VTEA replicated the results of flow cytometry while providing detailed analysis of the spatial distribution of immune cells in different regions of the kidney and in relation to specific renal structures. Unbiased exploration with VTEA enabled us to discover a population of tubular epithelial cells that expresses CD11C, a marker typically expressed on dendritic cells. Finally, we show the use of VTEA for large-scale quantitation of immune cells in entire human kidney biopsies. In summary, we show that VTEA is a simple and effective tool that supports unique digital interrogation and analysis of kidney tissue from animal models or biobanked human kidney biopsies. We have made VTEA freely available to interested investigators via electronic download.


Assuntos
Citometria por Imagem/métodos , Imageamento Tridimensional , Rim/citologia , Rim/imunologia , Humanos , Túbulos Renais/citologia , Fagócitos , Software
20.
J Am Soc Nephrol ; 28(8): 2420-2430, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28250053

RESUMO

In the live animal, tissue autofluorescence arises from a number of biologically important metabolites, such as the reduced form of nicotinamide adenine dinucleotide. Because autofluorescence changes with metabolic state, it can be harnessed as a label-free imaging tool with which to study metabolism in vivo Here, we used the combination of intravital two-photon microscopy and frequency-domain fluorescence lifetime imaging microscopy (FLIM) to map cell-specific metabolic signatures in the kidneys of live animals. The FLIM images are analyzed using the phasor approach, which requires no prior knowledge of metabolite species and can provide unbiased metabolic fingerprints for each pixel of the lifetime image. Intravital FLIM revealed the metabolic signatures of S1 and S2 proximal tubules to be distinct and resolvable at the subcellular level. Notably, S1 and distal tubules exhibited similar metabolic profiles despite apparent differences in morphology and autofluorescence emission with traditional two-photon microscopy. Time-lapse imaging revealed dynamic changes in the metabolic profiles of the interstitium, urinary lumen, and glomerulus-areas that are not resolved by traditional intensity-based two-photon microscopy. Finally, using a model of endotoxemia, we present examples of the way in which intravital FLIM can be applied to study kidney diseases and metabolism. In conclusion, intravital FLIM of intrinsic metabolites is a bias-free approach with which to characterize and monitor metabolism in vivo, and offers the unique opportunity to uncover dynamic metabolic changes in living animals with subcellular resolution.


Assuntos
Microscopia Intravital , Rim/citologia , Rim/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Rim/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA