RESUMO
This study examines the impact of ambient temperature on emotional well-being in the U.S. population aged 18+. The U.S. is an interesting test case because of its resources, technology and variation in climate across different areas, which also allows us to examine whether adaptation to different climates could weaken or even eliminate the impact of heat on well-being. Using survey responses from 1.9 million Americans over the period from 2008 to 2013, we estimate the effect of temperature on well-being from exogenous day-to-day temperature variation within respondents' area of residence and test whether this effect varies across areas with different climates. We find that increasing temperatures significantly reduce well-being. Compared to average daily temperatures in the 50-60°F (10-16°C) range, temperatures above 70°F (21°C) reduce positive emotions (e.g. joy, happiness), increase negative emotions (e.g. stress, anger), and increase fatigue (feeling tired, low energy). These effects are particularly strong among less educated and older Americans. However, there is no consistent evidence that heat effects on well-being differ across areas with mild and hot summers, suggesting limited variation in heat adaptation.
Assuntos
Saúde Mental , Temperatura , Adaptação Fisiológica , Adolescente , Adulto , Emoções , Fadiga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Intersecting socio-demographic transformations and warming climates portend increasing worldwide heat exposures and health sequelae. Cooling adaptation via air conditioning (AC) is effective, but energy-intensive and constrained by household-level differences in income and adaptive capacity. Using statistical models trained on a large multi-country household survey dataset (n = 673,215), we project AC adoption and energy use to mid-century at fine spatial resolution worldwide. Globally, the share of households with residential AC could grow from 27% to 41% (range of scenarios assessed: 33-48%), implying up to a doubling of residential cooling electricity consumption, from 1220 to 1940 (scenarios range: 1590-2377) terawatt-hours yr.-1, emitting between 590 and 1,365 million tons of carbon dioxide equivalent (MtCO2e). AC access and utilization will remain highly unequal within and across countries and income groups, with significant regressive impacts. Up to 4 billion people may lack air-conditioning in 2050. Our global gridded projections facilitate incorporation of AC's vulnerability, health, and decarbonization effects into integrated assessments of climate change.
RESUMO
On-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories use spatial proxies such as population and road density to downscale national or state-level data. Such procedures introduce errors where the proxy variables and actual emissions are weakly correlated, and limit analysis of the relationship between emissions and demographic trends at local scales. We develop an on-road emission inventory product for Massachusetts-based on roadway-level traffic data obtained from the Highway Performance Monitoring System (HPMS). We provide annual estimates of on-road CO2 emissions at a 1 × 1 km grid scale for the years 1980 through 2008. We compared our results with on-road emissions estimates from the Emissions Database for Global Atmospheric Research (EDGAR), with the Vulcan Product, and with estimates derived from state fuel consumption statistics reported by the Federal Highway Administration (FHWA). Our model differs from FHWA estimates by less than 8.5% on average, and is within 5% of Vulcan estimates. We found that EDGAR estimates systematically exceed FHWA by an average of 22.8%. Panel regression analysis of per-mile CO2 emissions on population density at the town scale shows a statistically significant correlation that varies systematically in sign and magnitude as population density increases. Population density has a positive correlation with per-mile CO2 emissions for densities below 2000 persons km(-2), above which increasing density correlates negatively with per-mile emissions.
Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Planejamento de Cidades/métodos , Monitoramento Ambiental/métodos , Modelos Teóricos , Emissões de Veículos/análise , Massachusetts , Densidade Demográfica , Análise de Regressão , Meios de TransporteRESUMO
We elucidate mid-century climate change impacts on electricity demand accounting for endogenous adoption of residential air-conditioning (AC) in affluent, cooler countries in Europe, and in poorer, hotter states in India. By 2050, in a high-warming scenario (SSP585) AC prevalence grows twofold in Europe and fourfold in India, reaching around 40% in both regions. We document a mitigation-adaptation tradeoff: AC expansion reduces daily heat exposures by 150 million and 3.8 billion person degree-days (PDDs), but increases annual electricity demand by 34 TWh and 168 TWh in Europe and India, respectively (corresponding to 2% and 15% of today's consumption). The increase in adoption and use of AC would result in an additional 130 MMTCO2, of which 120 MMTCO2 in India alone, if the additional electricity generated were produced with today's power mix. The tradeoff varies geographically and across income groups: a one PDD reduction in heat exposure in Europe versus India necessitates five times more electricity (0.53 kWh vs 0.1 kWh) and two times more emissions (0.16 kgCO[Formula: see text] vs 0.09 kgCO[Formula: see text]), on average. The decomposition of demand drivers offers important insights on how such tradeoff can be moderated through policies promoting technology-based and behavioral-based adaptation strategies.