RESUMO
PURPOSE: Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS: PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS: A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION: GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.
Assuntos
Exoma , Oftalmopatias , Humanos , Estudos Prospectivos , Sequência de Bases , RNA , Oftalmopatias/diagnóstico , Oftalmopatias/genéticaRESUMO
Blue cone monochromacy (BCM) is an X-linked retinal disorder characterized by low vision, photoaversion, and poor color discrimination. BCM is due to the lack of long-wavelength-sensitive and middle-wavelength-sensitive cone photoreceptor function and caused by mutations in the OPN1LW/OPN1MW gene cluster on Xq28. Here, we investigated the prevalence and the landscape of submicroscopic structural variants (SVs) at single-base resolution in BCM patients. We found that about one-third (n = 73) of the 213 molecularly confirmed BCM families carry an SV, most commonly deletions restricted to the OPN1LW/OPN1MW gene cluster. The structure and precise breakpoints of the SVs were resolved in all but one of the 73 families. Twenty-two families-all from the United States-showed the same SV, and we confirmed a common ancestry of this mutation. In total, 42 distinct SVs were identified, including 40 previously unreported SVs, thereby quadrupling the number of precisely mapped SVs underlying BCM. Notably, there was no "region of overlap" among these SVs. However, 90% of SVs encompass the upstream locus control region, an essential enhancer element. Its minimal functional extent based on deletion mapping in patients was refined to 358 bp. Breakpoint analyses suggest diverse mechanisms underlying SV formation as well as in one case the gene conversion-based exchange of a 142-bp deletion between opsin genes. Using parsimonious assumptions, we reconstructed the composition and copy number of the OPN1LW/OPN1MW gene cluster prior to the mutation event and found evidence that large gene arrays may be predisposed to the occurrence of SVs at this locus.
Assuntos
Defeitos da Visão Cromática , Opsinas de Bastonetes , Defeitos da Visão Cromática/genética , Deleção de Genes , Humanos , Família Multigênica/genética , Células Fotorreceptoras Retinianas Cones , Opsinas de Bastonetes/genéticaRESUMO
PURPOSE: The aim of this exploratory study is to investigate the role of S-cones in oscillatory potentials (OPs) generation by individuals with blue-cone monochromacy (BCM), retaining S-cones, and achromatopsia (ACHM), lacking cone functions. METHODS: This retrospective study analyzed data from 39 ACHM patients, 20 BCM patients, and 26 controls. Central foveal thickness was obtained using spectral-domain optical coherence tomography, while amplitude and implicit time (IT) of a- and b-waves were extracted from the ISCEV Standard dark-adapted 3 cd.s.m-2 full-field ERG (ffERG). Time-frequency analysis of the same measurement enabled the extraction of OPs, providing insights into the dynamic characteristics of the recorded signal. RESULTS: Both ACHM and BCM groups showed a significant reduction (p < .00001) of a- and b-wave amplitudes and ITs as well as the power of the OPs compared to the control groups. The comparison between ACHM and BCM didn't show any statistically significant differences in the electrophysiological parameters. The analysis of covariance revealed significantly reduced central foveal thickness in the BCM group compared to ACHM and controls (p < .00001), and in ACHM compared to controls (p < .00001), after age correction and Tukey post-hoc analysis. CONCLUSIONS: S-cones do not significantly influence OPs, and the decline in OPs' power is not solely due to a reduced a-wave. This suggests a complex non-linear network influenced by photoreceptor inputs. Morphological changes don't correlate directly with functional alterations, prompting further exploration of OPs' function and physiological role.
Assuntos
Defeitos da Visão Cromática , Eletrorretinografia , Células Fotorreceptoras Retinianas Cones , Tomografia de Coerência Óptica , Humanos , Defeitos da Visão Cromática/fisiopatologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Acuidade Visual/fisiologia , Adulto Jovem , Idoso , Adaptação à Escuridão/fisiologia , AdolescenteRESUMO
L-cone opsin expression by gene therapy is a promising treatment for blue cone monochromacy (BCM) caused by congenital lack of long- and middle-wavelength-sensitive (L/M) cone function. Eight patients with BCM and confirmed pathogenic variants at the OPN1LW/OPN1MW gene cluster participated. Optical coherence tomography (OCT), chromatic perimetry, chromatic microperimetry, chromatic visual acuity (VA), and chromaticity thresholds were performed with unmodified commercial equipment and/or methods available in the public domain. Adaptive optics scanning laser ophthalmoscope (AOSLO) imaging was performed in a subset of patients. Outer retinal changes were detectable by OCT with an age-related effect on the foveal disease stage. Rod and short-wavelength-sensitive (S) cone functions were relatively retained by perimetry, although likely impacted by age-related increases in the pre-retinal absorption of short-wavelength lights. The central macula showed a large loss of red sensitivity on dark-adapted microperimetry. Chromatic VAs with high-contrast red gratings on a blue background were not detectable. Color vision was severely deficient. AOSLO imaging showed reduced total cone density with majority of the population being non-waveguiding. This study developed and evaluated specialized outcomes that will be needed for the determination of efficacy and safety in human clinical trials. Dark-adapted microperimetry with a red stimulus sampling the central macula would be a key endpoint to evaluate the light sensitivity improvements. VA changes specific to L-opsin can be measured with red gratings on a bright blue background and should also be considered as outcome measures in future interventional trials.
Assuntos
Defeitos da Visão Cromática , Terapia Genética , Células Fotorreceptoras Retinianas Cones , Opsinas de Bastonetes , Tomografia de Coerência Óptica , Acuidade Visual , Humanos , Defeitos da Visão Cromática/terapia , Defeitos da Visão Cromática/genética , Terapia Genética/métodos , Adulto , Masculino , Feminino , Tomografia de Coerência Óptica/métodos , Pessoa de Meia-Idade , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Adolescente , Adulto Jovem , Retina/metabolismo , Retina/diagnóstico por imagem , Criança , Testes de Campo Visual , Visão de Cores , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismoRESUMO
Cone dystrophies are a rare subgroup of inherited retinal dystrophies and hallmarked by color vision defects, low or decreasing visual acuity and central vision loss, nystagmus and photophobia. Applying genome-wide linkage analysis and array comparative genome hybridization, we identified a locus for autosomal dominant cone dystrophy on chromosome 16q12 in four independent multigeneration families. The locus is defined by duplications of variable size with a smallest region of overlap of 608 kb affecting the IRXB gene cluster and encompasses the genes IRX5 and IRX6. IRX5 and IRX6 belong to the Iroquois (Iro) protein family of homeodomain-containing transcription factors involved in patterning and regionalization of embryonic tissue in vertebrates, including the eye and the retina. All patients presented with a unique progressive cone dystrophy phenotype hallmarked by early tritanopic color vision defects. We propose that the disease underlies a misregulation of the IRXB gene cluster on chromosome 16q12 and demonstrate that overexpression of Irx5a and Irx6a, the two orthologous genes in zebrafish, results in visual impairment in 5-day-old zebrafish larvae.
Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 16/genética , Defeitos da Visão Cromática/genética , Distrofia de Cones/genética , Proteínas de Homeodomínio/genética , Família Multigênica , Fatores de Transcrição/genética , Animais , Hibridização Genômica Comparativa/métodos , Saúde da Família , Feminino , Regulação da Expressão Gênica , Genes Dominantes/genética , Humanos , Masculino , Linhagem , Análise de Sequência de DNA/métodos , Peixe-Zebra/genéticaRESUMO
PURPOSE: CNGA3 encoding the main subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors is one of the major disease-associated genes for achromatopsia. Most CNGA3 variants are missense variants with the majority being functionally uncharacterized and therefore hampering genetic diagnosis. In light of potential gene therapy, objective variant pathogenicity assessment is essential. METHODS: We established a medium-throughput aequorin-based luminescence bioassay allowing mutant CNGA3 channel function assessment via quantification of CNGA3 channel-mediated calcium influx in a cell culture system, thereby enabling American College of Medical Genetics and Genomics/Association for Molecular Pathology-based variant re-classification. RESULTS: We provide functional read-out obtained for 150 yet uncharacterized CNGA3 missense substitutions of which 55 were previously categorized as variants of uncertain significance (VUS) identifying 25 as functionally normal and 125 as functionally abnormal. These data enabled the American College of Medical Genetics and Genomics/ Association for Molecular Pathology-based variant re-classification of 52/55 VUS as either benign, likely benign, or likely pathogenic reaching a VUS re-classification rate of 94.5%. CONCLUSION: Our aequorin-based bioassay allows functionally ensured clinical variant interpretation for 150 CNGA3 missense variants enabling and supporting VUS re-classification and assuring molecular diagnosis to patients affected by CNGA3-associated achromatopsia, hereby identifying patients eligible for future gene therapy trials on this disease.
Assuntos
Defeitos da Visão Cromática , Humanos , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/patologia , Equorina/genética , Células Fotorreceptoras Retinianas Cones/patologia , Mutação de Sentido Incorreto/genética , Genômica , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genéticaRESUMO
BACKGROUND: Leber's hereditary optic neuropathy (LHON) has been considered a prototypical mitochondriopathy and a textbook example for maternal inheritance linked to certain disease-causing variants in the mitochondrial genome. Recently, an autosomal recessive form of LHON (arLHON) has been described, caused by disease-causing variants in the nuclear encoded gene DNAJC30. METHODS AND RESULTS: In this study, we screened the DNAJC30 gene in a large Central European cohort of patients with a clinical diagnosis of LHON or other autosomal inherited optic atrophies (OA). We identified likely pathogenic variants in 35/1202 patients, corresponding to a detection rate of 2.9%. The previously described missense variant c.152A>G;p.(Tyr51Cys) accounts for 90% of disease-associated alleles in our cohort and we confirmed a strong founder effect. Furthermore, we identified two novel pathogenic variants in DNAJC30: the nonsense variant c.610G>T;p.(Glu204*) and the in-frame deletion c.230_232del;p.(His77del). Clinical investigation of the patients with arLHON revealed a younger age of onset, a more frequent bilateral onset and an increased clinically relevant recovery compared with LHON associated with disease-causing variants in the mitochondrial DNA. CONCLUSION: This study expands previous findings on arLHON and emphasises the importance of DNAJC30 in the genetic diagnostics of LHON and OA in European patients.
Assuntos
Proteínas de Choque Térmico HSP40 , Atrofia Óptica Hereditária de Leber , Humanos , DNA Mitocondrial/genética , Proteínas de Choque Térmico HSP40/genética , Mitocôndrias/genética , Atrofia Óptica Hereditária de Leber/diagnóstico , Atrofia Óptica Hereditária de Leber/epidemiologia , Atrofia Óptica Hereditária de Leber/genéticaRESUMO
Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.
Assuntos
Defeitos da Visão Cromática , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Humanos , Mutação , Células Fotorreceptoras Retinianas ConesRESUMO
Purpose: Blue cone monochromacy (BCM) is an X-linked retinopathy caused by mutations in the red and green cone opsin genes. The aim of this study was to establish the clinical, genetic, and electrophysiological characteristics of a specific form of BCM. Methods: Patients harboring mutations in the OPN1LW/OPN1MW genes underwent a full clinical examination, including ocular examination, color vision, full-field electroretinography, color fundus and autofluorescence photography, and optical coherence tomography. Genetic analysis was performed using whole-exome sequencing, duplex PCR, PCR/restriction fragment length polymorphism, and Sanger sequencing. IBM SPSS Statistics v. 21.0 was used for the data analysis. Results: Twenty-five patients harboring various haplotypes in exon 3 of the OPN1LW/OPN1MW genes were recruited. They showed a milder incomplete phenotype of BCM than the typical BCM control group. They presented significantly better visual acuity (logarithm of the minimum angle of resolution [logMAR] 0.48 ± 0.26 vs. 1.10 ± 0.54; p < 0.0001) and a highly myopic refraction (-7.81 ± 5.81 D vs. -4.78 ± 5.27 D; p = 0.0222) compared with the BCM control group. The study group had higher 30-Hz cone flicker responses (28.60 ± 15.02 µv; n = 24), whereas the BCM group had none (0.66 ± 2.12 µv; n = 21; p < 0.0001). The Lanthony 15-HUE desaturated test was variable for the exon 3 haplotype group, with a tendency toward the deutan-protan axis. Conclusions: The present study included genetic and clinical data from the largest cohort of patients with exon 3 haplotypes that were previously shown to cause missplicing of the OPN1LW and OPN1MW genes. Analysis of the clinical data revealed better best-corrected visual acuity, more severe myopia, and higher 30-Hz cone flicker responses in the patients with exon 3 haplotypes than in those with typical BCM.
Assuntos
Defeitos da Visão Cromática , Opsinas dos Cones , Miopia , Defeitos da Visão Cromática/genética , Opsinas dos Cones/genética , Eletrorretinografia , Haplótipos , Humanos , Miopia/genética , Linhagem , FenótipoRESUMO
PURPOSE: To identify genetic variants associated with pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG) in unrelated patients and to further understand the genetic and potentially causal relationships between PDS and associated risk factors. DESIGN: A 2-stage genome-wide association meta-analysis with replication and subsequent in silico analyses including Mendelian randomization. PARTICIPANTS: A total of 574 cases with PG or PDS and 52 627 controls of European descent. METHODS: Genome-wide association analyses were performed in 4 cohorts and meta-analyzed in 3 stages: (1) a discovery meta-analysis was performed in 3 cohorts, (2) replication was performed in the fourth cohort, and (3) all 4 cohorts were meta-analyzed to increase statistical power. Two-sample Mendelian randomization was used to determine whether refractive error and intraocular pressure exert causal effects over PDS. MAIN OUTCOME MEASURES: The association of genetic variants with PDS and whether myopia exerts causal effects over PDS. RESULTS: Significant association was present at 2 novel loci for PDS/PG. These loci and follow-up analyses implicate the genes gamma secretase activator protein (GSAP) (lead single nucleotide polymorphism [SNP]: rs9641220, P = 6.0×10-10) and glutamate metabotropic receptor 5 (GRM5)/TYR (lead SNP: rs661177, P = 3.9×10-9) as important factors in disease risk. Mendelian randomization showed significant evidence that negative refractive error (myopia) exerts a direct causal effect over PDS (P = 8.86×10-7). CONCLUSIONS: Common SNPs relating to the GSAP and GRM5/TYR genes are associated risk factors for the development of PDS and PG. Although myopia is a known risk factor, this study uses genetic data to demonstrate that myopia is, in part, a cause of PDS and PG.
Assuntos
Glaucoma de Ângulo Aberto , Miopia , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/genética , Humanos , Pressão Intraocular , Miopia/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Certain combinations of common variants in exon 3 of OPN1LW and OPN1MW, the genes encoding the apo-protein of the long- and middle-wavelength sensitive cone photoreceptor visual pigments in humans, induce splicing defects and have been associated with dyschromatopsia and cone dysfunction syndromes. Here we report the identification of a novel exon 3 haplotype, G-C-G-A-T-T-G-G (referring to nucleotide variants at cDNA positions c.453, c.457, c.465, c.511, c.513, c.521, c.532, and c.538) deduced to encode a pigment with the amino acid residues L-I-V-V-A at positions p.153, p.171, p.174, p.178, and p.180, in OPN1LW or OPN1MW or both in a series of seven patients from four families with cone dysfunction. Applying minigene assays for all observed exon 3 haplotypes in the patients, we demonstrated that the novel exon 3 haplotype L-I-V-V-A induces a strong but incomplete splicing defect with 3-5% of residual correctly spliced transcripts. Minigene splicing outcomes were similar in HEK293 cells and the human retinoblastoma cell line WERI-Rb1, the latter retaining a cone photoreceptor expression profile including endogenous OPN1LW and OPN1MW gene expression. Patients carrying the novel L-I-V-V-A haplotype presented with a mild form of Blue Cone Monochromacy or Bornholm Eye Disease-like phenotype with reduced visual acuity, reduced cone electroretinography responses, red-green color vision defects, and frequently with severe myopia.
Assuntos
Defeitos da Visão Cromática , Opsinas de Bastonetes/genética , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/metabolismo , Éxons/genética , Células HEK293 , Haplótipos , Humanos , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/metabolismoRESUMO
Cyclic nucleotide-gated channel ß1 (CNGB1) encodes the 240-kDa ß subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.
Assuntos
Distrofias de Cones e Bastonetes/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Estudos de Coortes , Distrofias de Cones e Bastonetes/classificação , Distrofias de Cones e Bastonetes/epidemiologia , Distrofias de Cones e Bastonetes/patologia , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , MutaçãoRESUMO
Trafficking deficiency caused by missense mutations is a well known phenomenon that occurs for mutant, misfolded proteins. Typically, the misfolded protein is retained by the protein quality-control system and degraded by the endoplasmic reticulum-associated protein degradation pathway and thus does not reach its destination, although residual function of the protein may be preserved. Chemical and pharmacological chaperones can improve the targeting of trafficking-deficient proteins and thus may be promising candidates for therapeutic applications. Here, we report the application of a cellular bioassay based on the bioluminescent calcium reporter aequorin to quantify surface expression of mutant CNGA3 channels associated with the autosomal recessively inherited retinal disease achromatopsia. A screening of 77 compounds enabled the identification of effective chemical and pharmacological chaperones that result in a 1.5- to 4.8-fold increase of surface expression of mutant CNGA3. Using selected compounds, we confirmed that the rescue of the defective trafficking is not limited to a single mutation in CNGA3. Active compounds and our structure-activity correlated data for the dihydropyridine compound class may provide valuable information for developing a treatment of the trafficking defect in achromatopsia. SIGNIFICANCE STATEMENT: This study describes a novel luminescence-based assay to detect the surface expression of mutant trafficking-deficient CNGA3 channels based on the calcium-sensitive photoprotein aequorin. Using this assay for a compound screening, this study identifies novel chemical and pharmacological chaperones that restore the surface localization of mutant trafficking-deficient CNGA3 channels. The results from this work may serve as starting point for the development of potent compounds that rescue trafficking deficiencies in the autosomal recessively inherited retinal disease achromatopsia.
Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/efeitos dos fármacos , Mutação de Sentido Incorreto , Equorina/genética , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Di-Hidropiridinas/farmacologia , Genes Recessivos , Células HEK293 , Humanos , Transporte ProteicoRESUMO
Mutations in POC1B are a rare cause of inherited retinal degeneration. In this study, we present a thorough phenotypic and genotypic characterization of three individuals harboring putatively pathogenic variants in the POC1B gene. All patients displayed a similar, slowly progressive retinopathy (cone dystrophy or cone-rod dystrophy) with normal funduscopy but disrupted outer retinal layers on optical coherence tomography and variable age of onset. Other symptoms were decreased visual acuity and photophobia. Whole genome sequencing revealed a novel homozygous frameshift variant in one patient. Another patient was shown to harbor a novel deep intronic variant in compound heterozygous state with a previously reported canonical splice site variant. The third patient showed a novel nonsense variant and a novel non-canonical splice site variant. We aimed to validate the effect of the deep intronic variant and the non-canonical splice site variant by means of in vitro splice assays. In addition, direct RNA analysis was performed in one patient. Splicing analysis revealed that the non-canonical splice site variant c.561-3T>C leads to exon skipping while the novel deep intronic variant c.1033-327T>A causes pseudoexon activation. Our data expand the genetic landscape of POC1B mutations and confirm the benefit of genome sequencing in combination with downstream functional validation using minigene assays for the analysis of putative splice variants. In addition, we provide clinical multimodal phenotyping of the affected individuals.
Assuntos
Proteínas de Ciclo Celular/genética , Distrofia de Cones/genética , Íntrons/genética , Mutação/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Degeneração Retiniana/genética , Adolescente , Adulto , Éxons/genética , Feminino , Células HEK293 , Heterozigoto , Homozigoto , Humanos , Masculino , Retinose Pigmentar/genética , Virulência/genética , Adulto JovemRESUMO
We aimed to validate the effect of non-canonical splice site variants in the RPGR gene in five patients from four families diagnosed with retinitis pigmentosa. Four variants located in intron 2 (c.154 + 3_154 + 6del), intron 3 (c.247 + 5G>A), intron 7 (c.779-5T>G), and intron 13 (c.1573-12A>G), respectively, were analyzed by means of in vitro splice assays. Splicing analysis revealed different aberrant splicing events, including exon skipping and intronic nucleotide addition, which are predicted to lead either to an in-frame deletion affecting relevant protein domains or to a frameshift of the open reading frame. Our data expand the landscape of pathogenic variants in RPGR, thereby increasing the genetic diagnostic rate in retinitis pigmentosa and allowing patients harboring the analyzed variants to be enrolled in clinical trials.
Assuntos
Proteínas do Olho/genética , Mutação , Sítios de Splice de RNA , Retinose Pigmentar/genética , Adulto , Idoso , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Retinose Pigmentar/patologiaRESUMO
Achromatopsia (ACHM) is a rare autosomal recessively inherited retinal disease characterized by congenital photophobia, nystagmus, low visual acuity, and absence of color vision. ACHM is genetically heterogeneous and can be caused by biallelic mutations in the genes CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, or ATF6. We undertook molecular genetic analysis in a single female patient with a clinical diagnosis of ACHM and identified the homozygous variant c.778G>C;p.(D260H) in the CNGA3 gene. While segregation analysis in the father, as expected, identified the CNGA3 variant in a heterozygous state, it could not be displayed in the mother. Microsatellite marker analysis provided evidence that the homozygosity of the CNGA3 variant is due to partial or complete paternal uniparental isodisomy (UPD) of chromosome 2 in the patient. Apart from the ACHM phenotype, the patient was clinically unsuspicious and healthy. This is one of few examples proving UPD as the underlying mechanism for the clinical manifestation of a recessive mutation in a patient with inherited retinal disease. It also highlights the importance of segregation analysis in both parents of a given patient or especially in cases of homozygous recessive mutations, as UPD has significant implications for genetic counseling with a very low recurrence risk assessment in such families.
Assuntos
Cromossomos Humanos Par 2/genética , Defeitos da Visão Cromática/patologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Pai , Mutação , Dissomia Uniparental , Adolescente , Defeitos da Visão Cromática/genética , Feminino , Genes Recessivos , Humanos , Masculino , Linhagem , FenótipoRESUMO
Achromatopsia (ACHM) is an inherited autosomal recessive disease lacking cone photoreceptors functions. In this study, we characterize the time-frequency representation of the full-field electroretinogram (ffERG) component oscillatory potentials (OPs), to investigate the connections between photoreceptors and the inner retinal network using ACHM as a model. Time-frequency characterization of OPs was extracted from 52 controls and 41 achromat individuals. The stimulation via ffERG was delivered under dark-adaptation (DA, 3.0 and 10.0 cd·s·m-2) to assess mixed rod-cone responses. The ffERG signal was subsequently analyzed using a continuous complex Morlet transform. Time-frequency maps of both DA conditions show the characterization of OPs, disclosing in both groups two distinct time-frequency windows (~70-100 Hz and >100 Hz) within 50 ms. Our main result indicates a significant cluster (p < 0.05) in both conditions of reduced relative power (dB) in ACHM people compared to controls, mainly at the time-frequency window >100 Hz. These results suggest that the strongly reduced but not absent activity of OPs above 100 Hz is mostly driven by cones and only in small part by rods. Thus, the lack of cone modulation of OPs gives important insights into interactions between photoreceptors and the inner retinal network and can be used as a biomarker for monitoring cone connection to the inner retina.
Assuntos
Potenciais de Ação , Defeitos da Visão Cromática/patologia , Eletrorretinografia/métodos , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Estimulação LuminosaRESUMO
In this retrospective, longitudinal, observational cohort study, we investigated the phenotypic and genotypic features of retinitis pigmentosa associated with variants in the PDE6B gene. Patients underwent clinical examination and genetic testing at a single tertiary referral center, including best-corrected visual acuity (BCVA), kinetic visual field (VF), full-field electroretinography, full-field stimulus threshold, spectral domain optical coherence tomography, and fundus autofluorescence imaging. The genetic testing comprised candidate gene sequencing, inherited retinal disease gene panel sequencing, whole-genome sequencing, and testing for familial variants by Sanger sequencing. Twenty-four patients with mutations in PDE6B from 21 families were included in the study (mean age at the first visit: 32.1 ± 13.5 years). The majority of variants were putative splicing defects (8/23) and missense (7/23) mutations. Seventy-nine percent (38/48) of eyes had no visual acuity impairment at the first visit. Visual acuity impairment was mild in 4% (2/48), moderate in 13% (6/48), and severe in 4% (2/48). BCVA was symmetrical in the right and left eyes. The kinetic VF measurements were highly symmetrical in the right and left eyes, as was the horizontal ellipsoid zone (EZ) width. Regarding the genetic findings, 43% of the PDE6B variants found in our patients were novel. Thus, this study contributed substantially to the PDE6B mutation spectrum. The visual acuity impairment was mild in 83% of eyes, providing a window of opportunity for investigational new drugs. The EZ width was reduced in all patients and was highly symmetric between the eyes, making it a promising outcome measure. We expect these findings to have implications on the design of future PDE6B-related retinitis pigmentosa (RP) clinical trials.
Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Mutação , Fenótipo , Retinose Pigmentar/genética , Adolescente , Adulto , Criança , Eletrorretinografia , Proteínas do Olho/genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologia , Estudos Retrospectivos , Análise de Sequência de DNA , Tomografia de Coerência Óptica , Acuidade Visual , Campos Visuais , Adulto JovemRESUMO
We aimed to unravel the molecular genetic basis of inherited retinal degeneration (IRD) in a comprehensive cohort of patients diagnosed in the largest center for IRD in Germany. A cohort of 2,158 affected patients from 1,785 families diagnosed with IRD was analyzed by targeted next-generation sequencing (NGS). Patients with single-gene disorders (i.e., choroideremia and retinoschisis) were analyzed by Sanger sequencing and multiplex ligation-dependent probe amplification. Our study cohort accounts for â¼7% of the estimated 30,000 patients with IRD in Germany, thereby providing representative data for both the prevalence of IRDs and the mutation spectrum of IRD genes for the population in Germany. We achieved a molecular diagnostic rate of 35-95%, depending on the clinical entities, with a high detection rate for achromatopsia, retinoschisis, and choroideremia, and a low detection rate for central areolar choroidal dystrophy and macular dystrophy. A total of 1,161 distinct variants were identified, including 501 novel variants, reaffirming the known vast genetic heterogeneity of IRD in a mainly outbred European population. This study demonstrates the clinical utility of panel-based NGS in a large and highly heterogeneous cohort from an outbred population and for the first time gives a comprehensive representation of the genetic landscape of IRDs in Germany. The data are valuable and crucial for the scientific community and healthcare providers, but also for the pharmaceutical industry in the progressing field of personalized medicine and gene therapy.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Distrofias Retinianas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Alemanha , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fenótipo , Distrofias Retinianas/diagnóstico , Adulto JovemRESUMO
Our comprehensive cohort of 1100 unrelated achromatopsia (ACHM) patients comprises a considerable number of cases (~5%) harboring only a single pathogenic variant in the major ACHM gene CNGB3. We sequenced the entire CNGB3 locus in 33 of these patients to find a second variant which eventually explained the patients' phenotype. Forty-seven intronic CNGB3 variants were identified in 28 subjects after a filtering step based on frequency and the exclusion of variants found in cis with pathogenic alleles. In a second step, in silico prediction tools were used to filter out those variants with little odds of being deleterious. This left three variants that were analyzed using heterologous splicing assays. Variant c.1663-1205G>A, found in 14 subjects, and variant c.1663-2137C>T, found in two subjects, were indeed shown to exert a splicing defect by causing pseudoexon insertion into the transcript. Subsequent screening of further unsolved CNGB3 subjects identified four additional cases harboring the c.1663-1205G>A variant which makes it the eighth most frequent CNGB3 variant in our cohort. Compound heterozygosity could be validated in ten cases. Our study demonstrates that whole gene sequencing can be a powerful approach to identify the second pathogenic allele in patients apparently harboring only one disease-causing variant.