Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 159(1): 200-214, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25259927

RESUMO

Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.


Assuntos
Doença/genética , Drosophila melanogaster/genética , Testes Genéticos , Padrões de Herança , Interferência de RNA , Animais , Modelos Animais de Doenças , Humanos , Cromossomo X
2.
Cell ; 157(3): 636-50, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766809

RESUMO

CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.


Assuntos
Doenças do Sistema Nervoso Central/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Fosfotransferases/metabolismo , RNA de Transferência/metabolismo , Fatores de Transcrição/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Animais , Doenças do Sistema Nervoso Central/patologia , Cérebro/patologia , Pré-Escolar , Endorribonucleases/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos CBA , Microcefalia/genética , Doenças do Sistema Nervoso Periférico/patologia , RNA de Transferência/genética , Proteínas de Ligação a RNA
3.
Am J Hum Genet ; 110(8): 1249-1265, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506692

RESUMO

The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples. Modifications to our academic clinical laboratory including efficient test design, robotics, and a streamlined analysis approach increased our ability to test more than 1,000 samples per month for HOP using only one dedicated HOP laboratory technologist. Additionally, enrollment using a HIPAA-compliant smartphone app and sample collection using mouthwash increased efficiency and reduced cost. Here, we present our experience three years into HOP and discuss the lessons learned, including our successes, challenges, opportunities, and future directions, as well as the genetic screening results for the first 13,670 participants tested. Overall, we have identified 730 pathogenic/likely pathogenic variants in 710 participants in 24 of the 32 genes on the panel. The carrier rate for pathogenic/likely pathogenic variants in the inherited cancer genes on the panel for an unselected population was 5.0% and for familial hypercholesterolemia was 0.3%. Our laboratory experience described here may provide a useful model for population screening projects in other states.


Assuntos
Hiperlipoproteinemia Tipo II , Neoplasias , Humanos , Oregon/epidemiologia , Detecção Precoce de Câncer , Testes Genéticos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/genética
4.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351433

RESUMO

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Assuntos
Doenças Ósseas Metabólicas , Cútis Laxa , Animais , Humanos , Camundongos , Colágeno/genética , Cútis Laxa/genética , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo
5.
Ann Vasc Surg ; 105: 140-149, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38599485

RESUMO

INTRODUCTION: Engaging patients living with or at risk of aortic dissection via the Aortic Dissection Collaborative, physician education in vascular genetics was identified as a research priority. We surveyed vascular surgeons to characterize practice patterns, motivations, and barriers regarding aortopathy genetic testing. METHODS: An anonymous 27-question survey was distributed on social media platforms between November and December 2022. Domains included demographics, vascular genetic education, testing attitudes and utilization, and experience in treating patients with genetic vascular aortopathies. The analysis included summary statistics and unpaired t-test to compare responses by interest in incorporating testing and practice type. RESULTS: A total of 171 vascular surgeons from 15 countries responded to the survey (23% trainees). Over half received vascular genetics education during training (59%), and most (86%) were interested in incorporating genetic testing into their practice. Academic surgeons were more likely to have cared for a patient with a known genetic aortopathy over the past year than surgeons in hospital-based and private practices (83% vs. 56% vs. 27%; P < 0.01), to have ever made a referral to a medical geneticist (78% vs. 51% vs. 9%; P < 0.01), and have access to genetic counselors or geneticists (66% vs. 46% vs. 0%; P < 0.01). Barriers to genetic testing were rated as more significant by surgeons in nonacademic practices, with top barriers being insurance coverage of testing, cost of genetic testing, and access to genetic counselors. Evidence-based professional society guidelines were the strongest rated motivating factor for testing incorporation among respondents. CONCLUSIONS: Vascular surgeon attitudes are not major barriers to incorporating genetic testing for patients with aortopathies; however, practical challenges regarding genetic testing and counseling are barriers to implementation especially for vascular surgeons in nonacademic practices. Future efforts should focus on evidence-based society guidelines, continuing medical education to increase adoption, and facilitating access to genetic counseling.


Assuntos
Atitude do Pessoal de Saúde , Predisposição Genética para Doença , Testes Genéticos , Conhecimentos, Atitudes e Prática em Saúde , Padrões de Prática Médica , Cirurgiões , Humanos , Padrões de Prática Médica/tendências , Pesquisas sobre Atenção à Saúde , Feminino , Valor Preditivo dos Testes , Masculino , Procedimentos Cirúrgicos Vasculares , Motivação , Pessoa de Meia-Idade , Adulto , Fatores de Risco , Fenótipo , Aconselhamento Genético
6.
Hum Mutat ; 43(7): 869-876, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332613

RESUMO

Heterozygosity for missense variants and small in-frame deletions in GARS1 has been reported in patients with a range of genetic neuropathies including Charcot-Marie-Tooth disease type 2D (CMT2D), distal hereditary motor neuropathy type V (dHMN-V), and infantile spinal muscular atrophy (iSMA). We identified two unrelated patients who are each heterozygous for a previously unreported missense variant modifying amino-acid position 336 in the catalytic domain of GARS1. One patient was a 20-year-old woman with iSMA, and the second was a 41-year-old man with CMT2D. Functional studies using yeast complementation assays support a loss-of-function effect for both variants; however, this did not reveal variable effects that might explain the phenotypic differences. These cases expand the mutational spectrum of GARS1-related disorders and demonstrate phenotypic variability based on the specific substitution at a single residue.


Assuntos
Doença de Charcot-Marie-Tooth , Glicina-tRNA Ligase , Humanos , Doença de Charcot-Marie-Tooth/genética , Códon , Glicina-tRNA Ligase/genética , Mutação , Fenótipo
7.
Am J Hum Genet ; 105(5): 1005-1015, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630790

RESUMO

Lissencephaly comprises a spectrum of malformations of cortical development. This spectrum includes agyria, pachygyria, and subcortical band heterotopia; each represents anatomical malformations of brain cortical development caused by neuronal migration defects. The molecular etiologies of neuronal migration anomalies are highly enriched for genes encoding microtubules and microtubule-associated proteins, and this enrichment highlights the critical role for these genes in cortical growth and gyrification. Using exome sequencing and family based rare variant analyses, we identified a homozygous variant (c.997C>T [p.Arg333Cys]) in TUBGCP2, encoding gamma-tubulin complex protein 2 (GCP2), in two individuals from a consanguineous family; both individuals presented with microcephaly and developmental delay. GCP2 forms the multiprotein γ-tubulin ring complex (γ-TuRC) together with γ-tubulin and other GCPs to regulate the assembly of microtubules. By querying clinical exome sequencing cases and through GeneMatcher-facilitated collaborations, we found three additional families with bi-allelic variation and similarly affected phenotypes including a homozygous variant (c.1843G>C [p.Ala615Pro]) in two families and compound heterozygous variants consisting of one missense variant (c.889C>T [p.Arg297Cys]) and one splice variant (c.2025-2A>G) in another family. Brain imaging from all five affected individuals revealed varying degrees of cortical malformations including pachygyria and subcortical band heterotopia, presumably caused by disruption of neuronal migration. Our data demonstrate that pathogenic variants in TUBGCP2 cause an autosomal recessive neurodevelopmental trait consisting of a neuronal migration disorder, and our data implicate GCP2 as a core component of γ-TuRC in neuronal migrating cells.


Assuntos
Variação Genética/genética , Lisencefalia/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Alelos , Encéfalo/metabolismo , Movimento Celular/genética , Criança , Exoma/genética , Feminino , Homozigoto , Humanos , Masculino , Microtúbulos/genética , Malformações do Sistema Nervoso/genética , Neurônios/metabolismo , Fenótipo , Tubulina (Proteína)/genética
8.
Am J Hum Genet ; 105(4): 689-705, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495489

RESUMO

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.


Assuntos
Artrogripose/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Esfingomielina Fosfodiesterase/genética , Artrogripose/patologia , Linhagem da Célula , Criança , Retículo Endoplasmático/metabolismo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Microcefalia/patologia , Mitose , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Splicing de RNA
9.
Am J Hum Genet ; 99(3): 704-710, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27523599

RESUMO

GNB5 encodes the G protein ß subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision.


Assuntos
Bradicardia/genética , Bradicardia/fisiopatologia , Deficiências do Desenvolvimento/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Genes Recessivos/genética , Mutação/genética , Nó Sinoatrial/fisiopatologia , Adolescente , Animais , Criança , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Subunidades beta da Proteína de Ligação ao GTP/deficiência , Refluxo Gastroesofágico/genética , Refluxo Gastroesofágico/fisiopatologia , Deleção de Genes , Frequência Cardíaca/genética , Heterozigoto , Humanos , Masculino , Hipotonia Muscular/genética , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Doenças Retinianas/genética , Doenças Retinianas/fisiopatologia , Convulsões/genética , Síndrome , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra
10.
Am J Hum Genet ; 97(2): 199-215, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26166479

RESUMO

Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families.


Assuntos
Doenças Genéticas Inatas/genética , Genética Médica/métodos , Genética Médica/tendências , Fenótipo , Proteínas/genética , Humanos
11.
J Allergy Clin Immunol ; 139(1): 232-245, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27577878

RESUMO

BACKGROUND: Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. OBJECTIVE: We sought to investigate the ability of whole-exome screening methods to detect disease-causing variants in patients with PIDDs. METHODS: Patients with PIDDs from 278 families from 22 countries were investigated by using whole-exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome-tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. RESULTS: A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on molecular findings. Twelve PIDD-causing CNVs were detected, including 7 smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. CONCLUSION: This high-throughput genomic approach enabled detection of disease-related variants in unexpected genes; permitted detection of low-grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.


Assuntos
Síndromes de Imunodeficiência/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Feminino , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Am J Hum Genet ; 94(2): 303-9, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24462372

RESUMO

Optic nerve atrophy and hypoplasia can be primary disorders or can result from trans-synaptic degeneration arising from cerebral visual impairment (CVI). Here we report six individuals with CVI and/or optic nerve abnormalities, born after an uneventful pregnancy and delivery, who have either de novo heterozygous missense mutations in NR2F1, also known as COUP-TFI, or deletions encompassing NR2F1. All affected individuals show mild to moderate intellectual impairment. NR2F1 encodes a nuclear receptor protein that regulates transcription. A reporter assay showed that missense mutations in the zinc-finger DNA-binding domain and the putative ligand-binding domain decrease NR2F1 transcriptional activity. These findings indicate that NR2F1 plays an important role in the neurodevelopment of the visual system and that its disruption can lead to optic atrophy with intellectual disability.


Assuntos
Fator I de Transcrição COUP/genética , Deficiência Intelectual/genética , Atrofia Óptica/genética , Adolescente , Adulto , Sequência de Aminoácidos , Fator I de Transcrição COUP/metabolismo , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Genótipo , Humanos , Deficiência Intelectual/patologia , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Atrofia Óptica/patologia , Fenótipo , Adulto Jovem , Dedos de Zinco/genética
13.
J Allergy Clin Immunol ; 138(4): 1142-1151.e2, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27484032

RESUMO

BACKGROUND: Primary immunodeficiency diseases (PIDDs) are inherited disorders of the immune system. The most severe form, severe combined immunodeficiency (SCID), presents with profound deficiencies of T cells, B cells, or both at birth. If not treated promptly, affected patients usually do not live beyond infancy because of infections. Genetic heterogeneity of SCID frequently delays the diagnosis; a specific diagnosis is crucial for life-saving treatment and optimal management. OBJECTIVE: We developed a next-generation sequencing (NGS)-based multigene-targeted panel for SCID and other severe PIDDs requiring rapid therapeutic actions in a clinical laboratory setting. METHODS: The target gene capture/NGS assay provides an average read depth of approximately 1000×. The deep coverage facilitates simultaneous detection of single nucleotide variants and exonic copy number variants in one comprehensive assessment. Exons with insufficient coverage (<20× read depth) or high sequence homology (pseudogenes) are complemented by amplicon-based sequencing with specific primers to ensure 100% coverage of all targeted regions. RESULTS: Analysis of 20 patient samples with low T-cell receptor excision circle numbers on newborn screening or a positive family history or clinical suspicion of SCID or other severe PIDD identified deleterious mutations in 14 of them. Identified pathogenic variants included both single nucleotide variants and exonic copy number variants, such as hemizygous nonsense, frameshift, and missense changes in IL2RG; compound heterozygous changes in ATM, RAG1, and CIITA; homozygous changes in DCLRE1C and IL7R; and a heterozygous nonsense mutation in CHD7. CONCLUSION: High-throughput deep sequencing analysis with complete clinical validation greatly increases the diagnostic yield of severe primary immunodeficiency. Establishing a molecular diagnosis enables early immune reconstitution through prompt therapeutic intervention and guides management for improved long-term quality of life.


Assuntos
Análise de Sequência de DNA , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Adolescente , Criança , Feminino , Variação Genética , Humanos , Masculino , Patologia Molecular/normas , Patologia Molecular/tendências
14.
Am J Hum Genet ; 93(2): 197-210, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23810381

RESUMO

White matter hyperintensities (WMHs) of the brain are important markers of aging and small-vessel disease. WMHs are rare in healthy children and, when observed, often occur with comorbid neuroinflammatory or vasculitic processes. Here, we describe a complex 4 kb deletion in 2q36.3 that segregates with early childhood communication disorders and WMH in 15 unrelated families predominantly from Southeast Asia. The premature brain aging phenotype with punctate and multifocal WMHs was observed in ~70% of young carrier parents who underwent brain MRI. The complex deletion removes the penultimate exon 3 of TM4SF20, a gene encoding a transmembrane protein of unknown function. Minigene analysis showed that the resultant net loss of an exon introduces a premature stop codon, which, in turn, leads to the generation of a stable protein that fails to target to the plasma membrane and accumulates in the cytoplasm. Finally, we report this deletion to be enriched in individuals of Vietnamese Kinh descent, with an allele frequency of about 1%, embedded in an ancestral haplotype. Our data point to a constellation of early language delay and WMH phenotypes, driven by a likely toxic mechanism of TM4SF20 truncation, and highlight the importance of understanding and managing population-specific low-frequency pathogenic alleles.


Assuntos
Senilidade Prematura/genética , Sequência de Bases , Predisposição Genética para Doença , Transtornos do Desenvolvimento da Linguagem/genética , Leucoencefalopatias/genética , Deleção de Sequência , Tetraspaninas/genética , Idade de Início , Senilidade Prematura/complicações , Senilidade Prematura/etnologia , Senilidade Prematura/patologia , Povo Asiático , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Cromossomos Humanos Par 2 , Éxons , Feminino , Humanos , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/etnologia , Transtornos do Desenvolvimento da Linguagem/patologia , Leucoencefalopatias/complicações , Leucoencefalopatias/etnologia , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA
15.
Genet Med ; 18(5): 443-51, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26378787

RESUMO

PURPOSE: Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of genetic disorders of the peripheral nervous system. Copy-number variants (CNVs) contribute significantly to CMT, as duplication of PMP22 underlies the majority of CMT1 cases. We hypothesized that CNVs and/or single-nucleotide variants (SNVs) might exist in patients with CMT with an unknown molecular genetic etiology. METHODS: Two hundred patients with CMT, negative for both SNV mutations in several CMT genes and for CNVs involving PMP22, were screened for CNVs by high-resolution oligonucleotide array comparative genomic hybridization. Whole-exome sequencing was conducted on individuals with rare, potentially pathogenic CNVs. RESULTS: Putatively causative CNVs were identified in five subjects (~2.5%); four of the five map to known neuropathy genes. Breakpoint sequencing revealed Alu-Alu-mediated junctions as a predominant contributor. Exome sequencing identified MFN2 SNVs in two of the individuals. CONCLUSION: Neuropathy-associated CNV outside of the PMP22 locus is rare in CMT. Nevertheless, there is potential clinical utility in testing for CNVs and exome sequencing in CMT cases negative for the CMT1A duplication. These findings suggest that complex phenotypes including neuropathy can potentially be caused by a combination of SNVs and CNVs affecting more than one disease-associated locus and contributing to a mutational burden.Genet Med 18 5, 443-451.


Assuntos
Doença de Charcot-Marie-Tooth/genética , GTP Fosfo-Hidrolases/genética , Proteínas Mitocondriais/genética , Proteínas da Mielina/genética , Polineuropatias/genética , Adulto , Idade de Início , Doença de Charcot-Marie-Tooth/fisiopatologia , Pré-Escolar , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteína P0 da Mielina/genética , Condução Nervosa/genética , Polimorfismo de Nucleotídeo Único/genética , Polineuropatias/fisiopatologia
16.
Genet Med ; 18(7): 678-85, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26633545

RESUMO

PURPOSE: Whole-exome sequencing (WES) is increasingly used as a diagnostic tool in medicine, but prior reports focus on predominantly pediatric cohorts with neurologic or developmental disorders. We describe the diagnostic yield and characteristics of WES in adults. METHODS: We performed a retrospective analysis of consecutive WES reports for adults from a diagnostic laboratory. Phenotype composition was determined using Human Phenotype Ontology terms. RESULTS: Molecular diagnoses were reported for 17.5% (85/486) of adults, which is lower than that for a primarily pediatric population (25.2%; P = 0.0003); the diagnostic rate was higher (23.9%) for those 18-30 years of age compared to patients older than 30 years (10.4%; P = 0.0001). Dual Mendelian diagnoses contributed to 7% of diagnoses, revealing blended phenotypes. Diagnoses were more frequent among individuals with abnormalities of the nervous system, skeletal system, head/neck, and growth. Diagnostic rate was independent of family history information, and de novo mutations contributed to 61.4% of autosomal dominant diagnoses. CONCLUSION: Early WES experience in adults demonstrates molecular diagnoses in a substantial proportion of patients, informing clinical management, recurrence risk, and recommendations for relatives. A positive family history was not predictive, consistent with molecular diagnoses often revealed by de novo events, informing the Mendelian basis of genetic disease in adults.Genet Med 18 7, 678-685.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Testes Genéticos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adulto , Exoma/genética , Feminino , Doenças Genéticas Inatas/epidemiologia , Predisposição Genética para Doença , Humanos , Masculino , Patologia Molecular/métodos
17.
Hum Mol Genet ; 22(23): 4698-705, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23847051

RESUMO

We have previously shown that oral administration of curcumin significantly decreases the percentage of apoptotic Schwann cells and partially mitigates the severe neuropathy phenotype of the Trembler-J (Tr-J) mouse model in a dose-dependent manner. Here we compared the gene expression in sciatic nerves of 2-week-old pups and adult Tr-J with the same age groups of wild-type mice and found a significant increase in gene expression for hypoxia, inflammatory response and heat-shock proteins, the latter specifically the Hsp70 family, in Tr-J mice. We also detected an activation of different branches of unfolded protein responses (UPRs) in Tr-J mice. Administering curcumin results in lower expression of UPR markers suggesting it relieves endoplasmic reticulum (ER) cell stress sensors in sciatic nerves of Tr-J mice while the level of heat-shock proteins stays comparable to untreated Tr-J mice. We further tested if Hsp70 levels could influence the severity of the Tr-J neuropathy. Notably, reduced dosage of the Hsp70 strongly potentiates the severity of the Tr-J neuropathy, though the absence of Hsp70 had little effect in wild-type mice. In aggregate, these data provide further insights into the pathological disease mechanisms caused by myelin gene mutations and further support the exploration of curcumin as a therapeutic approach for selected forms of inherited neuropathy and potentially for other genetic diseases due to ER-retained mutants.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/fisiologia , Transdução de Sinais/genética , Resposta a Proteínas não Dobradas
18.
Am J Med Genet A ; 167A(4): 831-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25736269

RESUMO

Congenital diaphragmatic hernia (CDH) is a relatively common, life--threatening birth defect. We present a family with recurrent CDH--paraesophageal and central--for whom exome sequencing (ES) revealed a frameshift mutation (c.4969_4970insA, p.Ile1657Asnfs*30) in the fibrillin 1 gene (FBN1) that causes Marfan syndrome. A diagnosis of Marfan syndrome had not been considered previously in this family. However, a review of the literature demonstrated that FBN1 mutations have an unusual pattern of CDH in which paraesophageal hernias are particularly common. Subsequent clinical evaluations revealed evidence for ectopia lentis in affected family members supporting a clinical diagnosis of Marfan syndrome. Since only two other cases of familial CDH have been described in association with FBN1 mutations, we investigated an oligogenic hypothesis by examining ES data for deleterious sequence changes in other CDH-related genes. This search revealed putatively deleterious sequence changes in four other genes that have been shown to cause diaphragm defects in humans and/or mice--FREM1, DES, PAX3 and MET. It is unclear whether these changes, alone or in aggregate, are contributing to the development of CDH in this family. However, their individual contribution is likely to be small compared to that of the frameshift mutation in FBN1. We conclude that ES can be used to identify both major and minor genetic factors that may contribute to CDH. These results also suggest that ES should be considered in the diagnostic evaluation of individuals and families with CDH, particularly when other diagnostic modalities have failed to reveal a molecular etiology.


Assuntos
Hérnias Diafragmáticas Congênitas/diagnóstico , Síndrome de Marfan/diagnóstico , Proteínas dos Microfilamentos/genética , Adulto , Pré-Escolar , Análise Mutacional de DNA , Exoma , Feminino , Fibrilina-1 , Fibrilinas , Mutação da Fase de Leitura , Estudos de Associação Genética , Hérnias Diafragmáticas Congênitas/genética , Humanos , Masculino , Síndrome de Marfan/genética , Linhagem
20.
Am J Med Genet A ; 164A(9): 2328-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25045128

RESUMO

GAPO syndrome (OMIM#230740) is the acronym for growth retardation, alopecia, pseudoanodontia, and optic atrophy. About 35 cases have been reported, making it among one of the rarest recessive conditions. Distinctive craniofacial features including alopecia, rarefaction of eyebrows and eyelashes, frontal bossing, high forehead, mid-facial hypoplasia, hypertelorism, and thickened eyelids and lips make GAPO syndrome a clinically recognizable phenotype. While this genomic study was in progress mutations in ANTXR1 were reported to cause GAPO syndrome. In our study we performed whole exome sequencing (WES) for five affected individuals from three Turkish kindreds segregating the GAPO trait. Exome sequencing analysis identified three novel homozygous mutations including; one frame-shift (c.1220_1221insT; p.Ala408Cysfs*2), one splice site (c.411A>G; p.Gln137Gln), and one non-synonymous (c.1150G>A; p.Gly384Ser) mutation in the ANTXR1 gene. Our studies expand the allelic spectrum in this rare condition and potentially provide insight into the role of ANTXR1 in the regulation of the extracellular matrix.


Assuntos
Alopecia/genética , Anodontia/genética , Exoma/genética , Transtornos do Crescimento/genética , Mutação/genética , Proteínas de Neoplasias/genética , Atrofias Ópticas Hereditárias/genética , Receptores de Superfície Celular/genética , Adolescente , Adulto , Sequência de Bases , Criança , Segregação de Cromossomos/genética , Análise Mutacional de DNA , Fácies , Família , Feminino , Humanos , Masculino , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Linhagem , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA