Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123324, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237849

RESUMO

Eutrophication by human activities is increasingly affecting ecosystem functioning and plant community composition. So far, studies mainly focus on the effects of atmospheric nitrogen deposition, surface water eutrophication or soil nutrient accumulation. Groundwater pollution of spring habitats, however, has received much less attention, although numerous papers report groundwater nutrient enrichment worldwide. This study presents a survey on groundwater pollution (with emphasis on nitrate and phosphate) and bryophyte composition in 51 ambient petrifying springs in 5 NW European countries, which were compared to published data from 173 other sites in 11 European countries. The reviewed dataset covers a broad range of unpolluted to heavily polluted springs with nitrate concentrations between 0.7 and 3227 µmol l-1. Most petrifying springs in the rural lowlands of NW Europe were found to have elevated concentrations of nitrate and phosphate with the most polluted springs occurring in The Netherlands. The cover of individual characteristic bryophyte species significantly correlates with groundwater nutrient concentrations indicating that nutrient pollution of spring waters affects bryophyte composition. Palustriella commutata, Eucladium verticillatum and Brachythecium rivulare prefer unpolluted petrifying springs whereas Cratoneuron filicinum and Pellia endiviifolia show a much broader tolerance to groundwater pollution. In order to sustain at least the basic conditions for the typical bryophyte composition of petrifying springs habitats, threshold values of 288 µmol (18 mg l-1) NO3- l-1 and 0.42 µmol (0.04 mg l-1) ortho-PO43- l-1 were defined. Data analysis of the spring water composition indicates that the main source for nutrient and nutrient induced base cation enrichment are nitrate losses from intensively used agricultural fields. The anthropogenically induced but regionally different chemical processes in subsoil and aquifers can result in different levels of nutrient pollution in springs. Further regulations for nitrate and phosphate application are required to conserve and restore groundwater fed ecosystems in Europe.


Assuntos
Briófitas , Bryopsida , Água Subterrânea , Humanos , Ecossistema , Nitratos/análise , Água Subterrânea/química , Água/análise , Fosfatos/análise
2.
PLoS One ; 14(4): e0215645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017976

RESUMO

In peatland restoration we often lack an information whether re-established ecosystems are functionally similar to non-degraded ones. We re-analysed the long-term outcomes of restoration on vegetation and plant functional traits in 38 European fens restored by rewetting (18 sites) and topsoil removal (20 sites). We used traits related to nutrient acquisition strategies, competitiveness, seed traits, and used single- and multi-trait metrics. A separate set of vegetation records from near-natural fens with diverse plant communities was used to generate reference values to aid the comparisons. We found that both restoration methods enhanced the similarity of species composition to non-degraded systems but trait analysis revealed differences between the two approaches. Traits linked to nutrient acquisition strategies indicated that topsoil removal was more effective than rewetting. After topsoil removal competitive species in plant communities had decreased, while stress-tolerant species had increased. A substantial reduction in nutrient availability ruled out the effect of initial disturbance. An ability to survive and grow in anoxic conditions was enhanced after restoration, but the reference values were not achieved. Rewetting was more effective than topsoil removal in restricting variation in traits values permitted in re-developing vegetation. We found no indication of a shift towards reference in seed traits, which suggested that dispersal constraint and colonization deficit can be a widespread phenomena. Two functional diversity indices: functional richness and functional dispersion showed response to restoration and shifted values towards reference mires and away from the degraded systems. We concluded that targeting only one type of environmental stressor does not lead to a recovery of fens, as it provides insufficient level of stress to restore a functional ecosystem. In general, restoration efforts do not ensure the re-establishment and long-term persistence of fens. Restoration efforts result in recovery of fen ecosystems, confirmed with our functional trait analysis, although more rigid actions are needed for restoring fully functional mires, by achieving high and constant levels of anoxia and nutrient stresses.


Assuntos
Conservação dos Recursos Naturais/métodos , Fenômenos Fisiológicos Vegetais , Áreas Alagadas , Biodiversidade , Ecossistema , Europa (Continente) , Desenvolvimento Vegetal , Solo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA