Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235786

RESUMO

As climate change-induced heatwaves become more common, phenotypic plasticity at multiple levels is a key mitigation strategy by which organisms can optimise selective outcomes. In ectotherms, changes to both metabolism and behaviour can help alleviate thermal stress. Nonetheless, no study in any ectotherm has yet empirically investigated how changing temperatures affect among-individual differences in the associations between these traits. Using the beadlet anemone (Actinia equina), an intertidal species from a thermally heterogeneous environment, we investigated how individual metabolic rates, linked to morphotypic differences in A. equina, and boldness were related across changing temperatures. A crossed-over design and a temporal control were used to test the same individuals at a non-stressful temperature, 13°C, and under a simulated heatwave at 21°C. At each temperature, short-term repeated measurements of routine metabolic rate (RMR) and a single measurement of a repeatable boldness-related behaviour, immersion response time (IRT), were made. Individual differences, but not morphotypic differences, were highly predictive of metabolic plasticity, and the plasticity of RMR was associated with IRT. At 13°C, shy animals had the highest metabolic rates, while at 21°C, this relationship was reversed. Individuals that were bold at 13°C also exhibited the highest metabolic rates at 21°C. Additional metabolic challenges during heatwaves could be detrimental to fitness in bold individuals. Equally, lower metabolic rates at non-stressful temperatures could be necessary for optimal survival as heatwaves become more common. These results provide novel insight into the relationship between metabolic and behavioural plasticity, and its adaptive implications in a changing climate.


Assuntos
Anêmonas-do-Mar , Animais , Comportamento Animal/fisiologia , Temperatura
2.
J Anim Ecol ; 89(10): 2311-2324, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32830317

RESUMO

Between-individual variation in behavioural phenotype, termed personality, is an important determinant of how populations cope with acute environmental fluctuation related to climate change. Personality in the beadlet sea anemone Actinia equina is linked to genetically distinct morphotypes, which are associated with different heights on the shore. In the intertidal zone, high-shore environments experience more environmental fluctuation due to longer periods of exposure, and animals adapted to live in these environments are predicted to deal more effectively with environmental perturbation than their low-shore counterparts. We collected beadlet anemones of two different morphotypes from three different shore heights. We investigated variation in two behaviours at three different temperatures and in a temporal control treatment where the temperature was not changed: startle response time, the time it took an anemone to re-extend its tentacles after a threatening stimulus, and immersion response time, the time to re-extend tentacles after simulated tidal immersion. These behaviours reflect risk-taking and allow individuals to be categorized as bold, shy or intermediate based upon response times. Both behaviours showed significant changes as the temperature increased. For immersion response, the morphotype associated with the low-shore-lengthened response times at high temperatures. For startle response, all animals lengthened their response times at high temperatures but animals collected from the low-shore lengthened theirs to the greatest degree. At the individual level, although control individuals exhibited temporal changes in their response times, a clear effect of temperature was present in both behaviours. Shy and bold individuals became more intermediate at higher temperatures in immersion response (this effect was present to a lesser degree in control individuals), while intermediate individuals raised their response times at higher temperatures for startle response. Given that prolonged tentacle retraction reduces foraging opportunities and can negatively impact respiratory efficiency, our data suggest that some individuals within a single population of A. equina, particularly those associated with the lower shore, may exhibit less effective behavioural responses to temperature shifts than others. These findings demonstrate that acute temperature changes influence risk-taking, and could have profound short and long-term implications for survival in the face of climate change.


Assuntos
Anêmonas-do-Mar , Animais , Comportamento Animal , Mudança Climática , Personalidade , Temperatura
3.
Zoo Biol ; 37(6): 434-439, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30457163

RESUMO

Jellyfish are a popular public aquarium species, however, their collection from natural populations is undesirable due to impact on species abundance and bycatch. Thus, a sustainable supply of jellyfish bred in-house would be highly desirable. Here we describe an investigation into developing a sustainable moon jellyfish, Aurelia aurita, breeding program by determining the impact of substrate type on reattachment of polyps and the influence of iodine and temperature on strobilation and ephyra production. To test whether reattachment and growth of moon jellyfish polyps are influenced by substrate type polyps were provided with anthropogenic and natural substrates after being dislodged in experimental aquaria. Polyps selectively re-attached to plastics rather than natural materials. However, polyp growth was similar on all tested substrates. We tested whether cooling and addition of iodine affected strobilation. A period of cooling of around 10 °C while also introducing soluble iodine to the polyps enhanced strobilation rate. This method produced ephyra at a reliable rate in captivity negating the need for collection of wild individuals providing a supply of individuals for exhibit and for conservation research within a public aquarium. These results demonstrate that plastics should be adopted as an easier to colonize substrate and the use of cooling with iodine addition can enhance sustainable breeding protocols of moon jellyfish and may be relevant to the production of comparable jellyfish species.


Assuntos
Cruzamento/métodos , Cifozoários/fisiologia , Temperatura , Animais , Iodo/farmacologia , Plásticos , Cifozoários/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA