Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 185(12): 7646-53, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21068410

RESUMO

Apoptosis of oligodendrocytes (ODCs), the myelin-producing glial cells in the CNS, plays a central role in demyelinating diseases such as multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. To investigate the mechanism behind ODC apoptosis in EAE, we made use of conditional knockout mice lacking the adaptor protein FADD specifically in ODCs (FADD(ODC-KO)). FADD mediates apoptosis by coupling death receptors with downstream caspase activation. In line with this, ODCs from FADD(ODC-KO) mice were completely resistant to death receptor-induced apoptosis in vitro. In the EAE model, FADD(ODC-KO) mice followed an ameliorated clinical disease course in comparison with control littermates. Lymphocyte and macrophage infiltration into the spinal cord parenchyma was significantly reduced, as was the extent of demyelination and proinflammatory gene expression. Collectively, our data show that FADD is critical for ODC apoptosis and the development of autoimmune demyelinating disease.


Assuntos
Apoptose/imunologia , Encefalomielite Autoimune Experimental/imunologia , Proteína de Domínio de Morte Associada a Fas/imunologia , Deleção de Genes , Esclerose Múltipla/imunologia , Oligodendroglia/imunologia , Animais , Apoptose/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Proteína de Domínio de Morte Associada a Fas/biossíntese , Proteína de Domínio de Morte Associada a Fas/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Bainha de Mielina/imunologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia
2.
Curr Biol ; 12(4): 289-94, 2002 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11864568

RESUMO

An important mechanism for the specification and development of the animal germ line is the localization of specific molecules to the germ plasm. Restriction of these molecules to the germ line is considered to be critical for proper development of the germ line as well as the soma. Cytoplasmic localization alone, however, may not be sufficient to achieve germ line-specific expression. While zebrafish vasa mRNA is localized to the germ plasm, the Vasa protein is initially distributed uniformly in the embryo, and its expression becomes restricted to the PGCs only later in development. Here, we demonstrate that, in addition to vasa RNA localization, multiple cell type-specific posttranscriptional mechanisms act on vasa mRNA and Vasa protein. We show that the portion of the maternal vasa mRNA, which is partitioned to somatic cells, is rapidly degraded, whereas vasa RNA is stabilized in the PGCs in a process that is mediated by cis-acting elements within the molecule. Similarly, the Vasa protein is highly unstable in somatic cells, but not in the PGCs. Finally, we demonstrate that subcellular localization of Vasa protein involves cis-acting domains within the protein. In conclusion, we show that posttranscriptional degradation-protection mechanisms acting on RNA and protein function in a vertebrate to enrich for specific molecules in the PGCs.


Assuntos
Regulação da Expressão Gênica , Células Germinativas/metabolismo , RNA Helicases/genética , Estabilidade de RNA , Peixe-Zebra/genética , Animais , RNA Helicases DEAD-box , Hibridização In Situ , Microscopia de Fluorescência , Transporte Proteico , RNA Helicases/metabolismo , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Transcrição Gênica/genética , Proteínas de Peixe-Zebra
3.
Development ; 134(12): 2227-36, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17507392

RESUMO

Oocytes in the C. elegans gonad enlarge rapidly. During the stage of enlargement, they are transcriptionally quiescent, and it is not understood how they acquire large quantities of materials such as mRNA and protein. Enlarging oocytes are connected via cytoplasmic bridges to a large, younger population of transcriptionally active germ cells at various stages of mitosis and meiosis. We show here that there is a general streaming of gonad cytoplasm towards and into the enlarging oocytes, originating primarily from pachytene-stage germ cells. Because previous studies suggested that most or all of the pachytene germ cells have the potential to differentiate into oocytes, the pachytene cells appear to function transiently as nurse cells. Somatic gonadal cells that surround the germ cells do not appear essential for streaming. Instead, materials appear to be pulled into oocytes by forces generated either in, or adjacent to, the enlarging oocytes themselves. Streaming appears to be driven by the actomyosin cytoskeleton, although we show that populations of both microfilaments and microtubules are oriented in the direction of flow. Our study shows that oocyte enlargement in C. elegans differs significantly from that in Drosophila, where a small number of specialized nurse cells expel their contents into the enlarging oocyte.


Assuntos
Actinas/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Corrente Citoplasmática/fisiologia , Oócitos , Oogênese/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Feminino , Modelos Biológicos , Oócitos/citologia , Oócitos/fisiologia , Interferência de RNA
4.
Development ; 129(1): 25-36, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11782398

RESUMO

Migration of primordial germ cells (PGCs) from their site of specification towards the developing gonad is controlled by directional cues from somatic tissues. Although in several animals the PGCs are attracted by signals emanating from their final target, the gonadal mesoderm, little is known about the mechanisms that control earlier steps of migration. We provide evidence that a key step of zebrafish PGC migration, in which the PGCs become organized into bilateral clusters in the anterior trunk, is regulated by attraction of PGCs towards an intermediate target. Time-lapse observations of wild-type and mutant embryos reveal that bilateral clusters are formed at early somitogenesis, owing to migration of PGCs towards the clustering position from medial, posterior and anterior regions. Furthermore, PGCs migrate actively relative to their somatic neighbors and they do so as individual cells. Using mutants that exhibit defects in mesoderm development, we show that the ability to form PGC clusters depends on proper differentiation of the somatic cells present at the clustering position. Based on these findings, we propose that these somatic cells produce signals that attract PGCs. Interestingly, fate-mapping shows that these cells do not give rise to the somatic tissues of the gonad, but rather contribute to the formation of the pronephros. Thus, the putative PGC attraction center serves as an intermediate target for PGCs, which later actively migrate towards a more posterior position. This final step of PGC migration is defective in hands off mutants, where the intermediate mesoderm of the presumptive gonadal region is mispatterned. Our results indicate that zebrafish PGCs are guided by attraction towards two signaling centers, one of which may represent the somatic tissues of the gonad.


Assuntos
Comunicação Celular , Movimento Celular , Células Germinativas/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diferenciação Celular , Linhagem da Célula , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Células Germinativas/citologia , Mesoderma/citologia
5.
Development ; 129(7): 1645-55, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11923201

RESUMO

Segmentation of the vertebrate hindbrain leads to the formation of a series of rhombomeres with distinct identities. In mouse, Krox20 and kreisler play important roles in specifying distinct rhombomeres and in controlling segmental identity by directly regulating rhombomere-specific expression of Hox genes. We show that spiel ohne grenzen (spg) zebrafish mutants develop rhombomeric territories that are abnormal in both size and shape. Rhombomere boundaries are malpositioned or absent and the segmental pattern of neuronal differentiation is perturbed. Segment-specific expression of hoxa2, hoxb2 and hoxb3 is severely affected during initial stages of hindbrain development in spg mutants and the establishment of krx20 (Krox20 ortholog) and valentino (val; kreisler ortholog) expression is impaired. spg mutants carry loss-of-function mutations in the pou2 gene. pou2 is expressed at high levels in the hindbrain primordium of wild-type embryos prior to activation of krx20 and val. Widespread overexpression of Pou2 can rescue the segmental krx20 and val domains in spg mutants, but does not induce ectopic expression of these genes. This suggests that spg/pou2 acts in a permissive manner and is essential for normal expression of krx20 and val. We propose that spg/pou2 is an essential component of the regulatory cascade controlling hindbrain segmentation and acts before krx20 and val in the establishment of rhombomere precursor territories.


Assuntos
Proteínas Aviárias , Proteínas Oncogênicas , Rombencéfalo/embriologia , Fatores de Transcrição/genética , Proteínas de Xenopus , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Proteínas de Ligação a DNA/genética , Proteína 2 de Resposta de Crescimento Precoce , Proteínas Fetais/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio/genética , Hibridização In Situ , Fatores de Transcrição Maf , Fator de Transcrição MafB , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Fator 3 de Transcrição de Octâmero , Fatores do Domínio POU , Receptores Proteína Tirosina Quinases/genética , Receptor EphA4 , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA