Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 11(7): e1005066, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26225771

RESUMO

Although anti-retroviral therapy (ART) is highly effective in suppressing HIV replication, it fails to eradicate the virus from HIV-infected individuals. Stable latent HIV reservoirs are rapidly established early after HIV infection. Therefore, effective strategies for eradication of the HIV reservoirs are urgently needed. We report that ingenol-3-angelate (PEP005), the only active component in a previously FDA approved drug (PICATO) for the topical treatment of precancerous actinic keratosis, can effectively reactivate latent HIV in vitro and ex vivo with relatively low cellular toxicity. Biochemical analysis showed that PEP005 reactivated latent HIV through the induction of the pS643/S676-PKCδ/θ-IκBα/ε-NF-κB signaling pathway. Importantly, PEP005 alone was sufficient to induce expression of fully elongated and processed HIV RNAs in primary CD4+ T cells from HIV infected individuals receiving suppressive ART. Furthermore, PEP005 and the P-TEFb agonist, JQ1, exhibited synergism in reactivation of latent HIV with a combined effect that is 7.5-fold higher than the effect of PEP005 alone. Conversely, PEP005 suppressed HIV infection of primary CD4+ T cells through down-modulation of cell surface expression of HIV co-receptors. This anti-cancer compound is a potential candidate for advancing HIV eradication strategies.


Assuntos
Azepinas/farmacologia , Diterpenos/farmacologia , Infecções por HIV/tratamento farmacológico , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia , Latência Viral/efeitos dos fármacos , Azepinas/administração & dosagem , Diterpenos/administração & dosagem , HIV-1/efeitos dos fármacos , Humanos , Proteínas I-kappa B/farmacologia , Inibidor de NF-kappaB alfa , Fator B de Elongação Transcricional Positiva/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Triazóis/administração & dosagem , Ativação Viral/efeitos dos fármacos
2.
Nat Commun ; 15(1): 1605, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383538

RESUMO

Gut microbiota can adapt to their host environment by rapidly acquiring new mutations. However, the dynamics of this process are difficult to characterize in dominant gut species in their complex in vivo environment. Here we show that the fine-scale dynamics of genome-wide transposon libraries can enable quantitative inferences of these in vivo evolutionary forces. By analyzing >400,000 lineages across four human Bacteroides strains in gnotobiotic mice, we observed positive selection on thousands of cryptic variants - most of which were unrelated to their original gene knockouts. The spectrum of fitness benefits varied between species, and displayed diverse tradeoffs over time and in different dietary conditions, enabling inferences of their underlying function. These results suggest that within-host adaptations arise from an intense competition between numerous contending variants, which can strongly influence their emergent evolutionary tradeoffs.


Assuntos
Bacteroides , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Bacteroides/genética , Bactérias/genética , Microbioma Gastrointestinal/genética , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA