Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054069

RESUMO

Mitochondrial population maintenance in neurons is essential for neuron function and survival. Contact sites between mitochondria and the endoplasmic reticulum (ER) are poised to regulate mitochondrial homeostasis in neurons. These contact sites can function to facilitate transfer of calcium and lipids between the organelles and have been shown to regulate aspects of mitochondrial fission and fusion dynamics. VapB is an ER membrane protein present at a subset of ER-mitochondria contact sites. Mutations in VapB cause neurodegenerative disease. Specifically, a proline-to-serine mutation at amino acid 56 (P56S), correlates with susceptibility to amyotrophic lateral sclerosis (ALS) type 8. Given the relationship between failed mitochondrial health and neurodegenerative disease, we investigated the function of VapB in mitochondrial population maintenance. We demonstrate that transgenic expression of VapBP56S in zebrafish larvae (sex undetermined) increased mitochondrial biogenesis, causing increased mitochondrial population size in the axon terminal. Expression of wild type VapB did not alter biogenesis but, instead, increased mitophagy in the axon terminal. Using genetic manipulations to independently increase mitochondrial biogenesis in zebrafish neurons, we show that biogenesis is normally balanced by mitophagy to maintain a constant mitochondrial population size. VapBP56S transgenics fail to increase mitophagy to compensate for the increase in mitochondrial biogenesis, suggesting an impaired mitophagic response. Finally, using a synthetic ER-mitochondria tether, we show that VapB's function in mitochondrial turnover is likely independent of ER-mitochondrial tethering by contact sites. Our findings demonstrate that VapB can control mitochondrial turnover in the axon terminal, and this function is altered by the P56S ALS-linked mutation.Significance statement Mitochondrial population dysfunction is tightly tied to neurodegenerative diseases, including ALS. Maintenance of the mitochondrial population in neurons requires the birth of new mitochondria and the degradation of damaged organelles. ER-mitochondrial contact site proteins are in a position to regulate both processes in neurons. Our work demonstrates that an ALS-associated mutation in the contact site protein VapB disrupts both processes, identifying VapB as a mediator of regulated mitochondrial turnover to maintain a steady-state mitochondrial population.

2.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983843

RESUMO

In Arabidopsis, vacuolar sorting receptor isoform 1 (VSR1) sorts 12S globulins to the protein storage vacuoles during seed development. Vacuolar sorting is mediated by specific protein-protein interactions between VSR1 and the vacuolar sorting determinant located at the C terminus (ctVSD) on the cargo proteins. Here, we determined the crystal structure of the protease-associated domain of VSR1 (VSR1-PA) in complex with the C-terminal pentapeptide (468RVAAA472) of cruciferin 1, an isoform of 12S globulins. The 468RVA470 motif forms a parallel ß-sheet with the switch III residues (127TMD129) of VSR1-PA, and the 471AA472 motif docks to a cradle formed by the cargo-binding loop (95RGDCYF100), making a hydrophobic interaction with Tyr99. The C-terminal carboxyl group of the ctVSD is recognized by forming salt bridges with Arg95. The C-terminal sequences of cruciferin 1 and vicilin-like storage protein 22 were sufficient to redirect the secretory red fluorescent protein (spRFP) to the vacuoles in Arabidopsis protoplasts. Adding a proline residue to the C terminus of the ctVSD and R95M substitution of VSR1 disrupted receptor-cargo interactions in vitro and led to increased secretion of spRFP in Arabidopsis protoplasts. How VSR1-PA recognizes ctVSDs of other storage proteins was modeled. The last three residues of ctVSD prefer hydrophobic residues because they form a hydrophobic cluster with Tyr99 of VSR1-PA. Due to charge-charge interactions, conserved acidic residues, Asp129 and Glu132, around the cargo-binding site should prefer basic residues over acidic ones in the ctVSD. The structural insights gained may be useful in targeting recombinant proteins to the protein storage vacuoles in seeds.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Substituição de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Mutação de Sentido Incorreto , Conformação Proteica em Folha beta , Domínios Proteicos , Transporte Proteico , Protoplastos/química , Protoplastos/metabolismo , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Relação Estrutura-Atividade , Vacúolos/química , Vacúolos/genética , Vacúolos/metabolismo
3.
Nanotechnology ; 35(13)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38055996

RESUMO

Advances in mobile electronics and telecommunication systems along with 5G technologies have been escalating the electromagnetic interference (EMI) problem in recent years. Graphene-based material systems such as pristine graphene, graphene-polymer composites and other graphene-containing candidates have been shown to provide adequate EMI shielding performance. Besides achieving the needed shielding effectiveness (SE), the method of applying the candidate shielding material onto the object in need of protection is of enormous importance due to considerations of ease of application, reduced logistics and infrastructure, rapid prototyping and throughput, versatility to handle both rigid and flexible substrates and cost. Printing readily meets all these criteria and here we demonstrate plasma jet printing of thin films of graphene and its composite with copper to meet the EMI shielding needs. SE over 30 dB is achieved, which represents blocking over 99.9% of the incoming radiation. Graphene and its composite with copper yield higher green index compared to pure copper shields, implying reduced reflection of incoming electromagnetic waves to help reduce secondary pollution.

4.
Ann Neurol ; 91(1): 66-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761434

RESUMO

OBJECTIVE: Small fiber neuropathy (SFN) is clinically and etiologically heterogeneous. Although autoimmunity has been postulated to be pathophysiologically important in SFN, few autoantibodies have been described. We aimed to identify autoantibodies associated with idiopathic SFN (iSFN) by a novel high-throughput protein microarray platform that captures autoantibodies expressed in the native conformational state. METHODS: Sera from 58 SFN patients and 20 age- and gender-matched healthy controls (HCs) were screened against >1,600 immune-related antigens. Fluorescent unit readout and postassay imaging were performed, followed by composite data normalization and protein fold change (pFC) analysis. Analysis of an independent validation cohort of 33 SFN patients against the same 20 HCs was conducted to identify reproducible proteins in both cohorts. RESULTS: Nine autoantibodies were screened with statistical significance and pFC criteria in both cohorts, with at least 50% change in serum levels. Three proteins showed consistently high fold changes in main and validation cohorts: MX1 (FC = 2.99 and 3.07, respectively, p = 0.003, q = 0.076), DBNL (FC = 2.11 and 2.16, respectively, p = 0.009, q < 0.003), and KRT8 (FC = 1.65 and 1.70, respectively, p = 0.043, q < 0.003). Further subgroup analysis into iSFN and SFN by secondary causes (secondary SFN) in the main cohort showed that MX1 is higher in iSFN compared to secondary SFN (FC = 1.61 vs 0.106, p = 0.009). INTERPRETATION: Novel autoantibodies MX1, DBNL, and KRT8 are found in iSFN. MX1 may allow diagnostic subtyping of iSFN patients. ANN NEUROL 2022;91:66-77.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Neuropatia de Pequenas Fibras/imunologia , Adulto , Idoso , Autoanticorpos/sangue , Estudos de Coortes , Feminino , Humanos , Queratina-8/imunologia , Masculino , Proteínas dos Microfilamentos/imunologia , Pessoa de Meia-Idade , Proteínas de Resistência a Myxovirus/imunologia , Neuropatia de Pequenas Fibras/sangue , Domínios de Homologia de src/imunologia
5.
Muscle Nerve ; 67(4): 259-271, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36448457

RESUMO

Small-fiber neuropathy (SFN) is a disorder that exclusively affects the small nerve fibers, sparing the large nerve fibers. Thinly myelinated Aδ-fibers and unmyelinated C-fibers are damaged, leading to development of neuropathic pain, thermal dysfunction, sensory symptoms, and autonomic disturbances. Although many SFNs are secondary and due to immunological causes or metabolic disturbances, the etiology is unknown in up to half of the patients. Over the years, this proportion of "idiopathic SFN" has decreased, as familial and genetic causes have been discovered, thus shifting a proportion of once "idiopathic" cases to the genetic category. After the discovery of SCN9A-gene variants in 2012, SCN10A and SCN11A variants have been found to be pathogenic in SFN. With improved accessibility of SFN diagnostic tools and genetic tests, many non-SCN variants and genetically inherited systemic diseases involving the small nerve fibers have also been described, but only scattered throughout the literature. There are 80 SCN variants described as causing SFN, 8 genes causing hereditary sensory autonomic neuropathies (HSAN) described with pure SFN, and at least 7 genes involved in genetically inherited systemic diseases associated with SFN. This systematic review aims to consolidate and provide an updated overview on the genetic variants of SFN to date---SCN genes and beyond. Awareness of these genetic causes of SFN is imperative for providing treatment directions, prognostication, and management of expectations for patients and their health-care providers.


Assuntos
Neuralgia , Neuropatia de Pequenas Fibras , Humanos , Neuropatia de Pequenas Fibras/patologia , Neuralgia/etiologia , Fibras Nervosas Amielínicas/patologia , Testes Genéticos , Causalidade , Canal de Sódio Disparado por Voltagem NAV1.7/genética
6.
J Neurosci ; 41(7): 1371-1392, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33376159

RESUMO

In neurons, mitochondria are transported by molecular motors throughout the cell to form and maintain functional neural connections. These organelles have many critical functions in neurons and are of high interest as their dysfunction is associated with disease. While the mechanics and impact of anterograde mitochondrial movement toward axon terminals are beginning to be understood, the frequency and function of retrograde (cell body directed) mitochondrial transport in neurons are still largely unexplored. While existing evidence indicates that some mitochondria are retrogradely transported for degradation in the cell body, the precise impact of disrupting retrograde transport on the organelles and the axon was unknown. Using long-term, in vivo imaging, we examined mitochondrial motility in zebrafish sensory and motor axons. We show that retrograde transport of mitochondria from axon terminals allows replacement of the axon terminal population within a day. By tracking these organelles, we show that not all mitochondria that leave the axon terminal are degraded; rather, they persist over several days. Disrupting retrograde mitochondrial flux in neurons leads to accumulation of aged organelles in axon terminals and loss of cell body mitochondria. Assays of neural circuit activity demonstrated that disrupting mitochondrial transport and function has no effect on sensory axon terminal activity but does negatively impact motor neuron axons. Taken together, our work supports a previously unappreciated role for retrograde mitochondrial transport in the maintenance of a homeostatic distribution of mitochondria in neurons and illustrates the downstream effects of disrupting this process on sensory and motor circuits.SIGNIFICANCE STATEMENT Disrupted mitochondrial transport has been linked to neurodegenerative disease. Retrograde transport of this organelle has been implicated in turnover of aged organelles through lysosomal degradation in the cell body. Consistent with this, we provide evidence that retrograde mitochondrial transport is important for removing aged organelles from axons; however, we show that these organelles are not solely degraded, rather they persist in neurons for days. Disrupting retrograde mitochondrial transport impacts the homeostatic distribution of mitochondria throughout the neuron and the function of motor, but not sensory, axon synapses. Together, our work shows the conserved reliance on retrograde mitochondrial transport for maintaining a healthy mitochondrial pool in neurons and illustrates the disparate effects of disrupting this process on sensory versus motor circuits.


Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/patologia , Células Cultivadas , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Organelas/genética , Organelas/metabolismo , Organelas/patologia , Ratos , Peixe-Zebra
7.
Cancer Immunol Immunother ; 71(11): 2583-2596, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35299256

RESUMO

Non-keratinizing nasopharyngeal carcinoma (NPC) is a malignancy with a poor prognosis for relapsing patients and those with metastatic disease. Here, we identify a novel disease mechanism of NPC which may be its Achilles' heel that makes it susceptible to immunotherapy. CD137 is a potent costimulatory receptor on activated T cells, and CD137 agonists strongly enhance anti-tumor immune responses. A negative feedback mechanism prevents overstimulation by transferring CD137 from T cells to CD137 ligand (CD137L)-expressing antigen presenting cells (APC) during cognate interaction, upon which the CD137-CD137L complex is internalized and degraded. We found ectopic expression of CD137 on 42 of 122 (34.4%) NPC cases, and that CD137 is induced by the Epstein-Barr virus latent membrane protein (LMP) 1. CD137 expression enables NPC to hijack the inbuilt negative feedback mechanism to downregulate the costimulatory CD137L on APC, facilitating its escape from immune surveillance. Further, the ectopically expressed CD137 signals into NPC cells via the p38-MAPK pathway, and induces the expression of IL-6, IL-8 and Laminin γ2. As much as ectopic CD137 expression may support the growth and spread of NPC, it may be a target for its immunotherapeutic elimination. Natural killer cells that express a CD137-specific chimeric antigen receptor induce death in CD137+ NPC cells, in vitro, and in vivo in a murine xenograft model. These data identify a novel immune escape mechanism of NPC, and lay the foundation for an urgently needed immunotherapeutic approach for NPC.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Receptores de Antígenos Quiméricos , Ligante 4-1BB , Animais , Herpesvirus Humano 4 , Humanos , Interleucina-6 , Interleucina-8 , Laminina , Camundongos , Carcinoma Nasofaríngeo , Recidiva Local de Neoplasia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
8.
Osteoporos Int ; 33(12): 2453-2466, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35776148

RESUMO

The overall incidence of imminent fracture after a prior fragility fracture was 7.58% in the first year and 11.58% in the first 2 years. Approximately half of re-fractures occurred in the first 2 years after a fragility fracture. Older patients that have suffered from a fragility fracture should be treated promptly, with immediate care and a secondary fracture prevention to prevent the high imminent risk of a fracture. INTRODUCTION: Imminent fractures refer to the fractures that occur within 2 years of an initial fracture. It is well known that the risk of a subsequent fracture is not constant with time and occurs shortly after the initial one. This systematic review and meta-analysis aimed to present the existing data on imminent fracture worldwide. METHODS: Literature search was conducted in Pubmed, Embase, and Web of Science databases until 26 October 2021 for studies reporting the incidence of imminent osteoporotic fractures among people aged 50 years or older. The overall incidence of imminent fracture was pooled and subgroup analyses of index fracture sites and regions on incidence of imminent fracture were performed, with the 95% confidence interval (CI) being calculated. Percentage of imminent fracture occurring in follow-up period was calculated and pooled by meta-analysis. Hazard ratio (HR) was used to estimate the gender differences on the imminent risk of fracture. RESULTS: A total of 1446 articles were identified. Nineteen observational studies were eligible for our systematic review, in which 18 were used for quantitative analysis. Pooled overall incidence of imminent fracture in the first year after an osteoporotic fracture was 7.58% (95% CI 5.84 to 9.31%) and cumulative incidence in the first 2 years was 11.58% (95% CI 8.94 to 14.21%). Subgroup analysis showed that in the first 2 years, the pooled incidence in Asia was 7.30% (95% CI 3.42 to 11.18%), whilst incidence in Europe/North America was 13.17% (95% CI 10.14 to 16.20%). In included studies with follow-up period of more than 5 years, pooled imminent fracture percentage in the first 2 years was 47.24% (95% CI 26.18 to 68.30%). Hazard ratio (HR) on gender showed that women had an overall slight increase in risk of imminent fractures (HR 1.18, 95% CI 1.11 to 1.25). CONCLUSION: The incidence of imminent fracture is high globally at 11.58%. Approximately half of all refractures occur in the first 2 years after an index fragility fracture. Older patients that have suffered from a fragility fracture should be treated promptly. Also, immediate care and secondary fracture prevention are necessary to prevent the high imminent risk of a fracture, especially within the first 2 years.


Assuntos
Fraturas por Osteoporose , Humanos , Feminino , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Fraturas por Osteoporose/prevenção & controle , Incidência , Bases de Dados Factuais , Europa (Continente) , Ásia , Estudos Observacionais como Assunto
9.
J Autoimmun ; 112: 102499, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32505443

RESUMO

CD137 (TNFRSF9, 4-1BB) is a potent co-stimulatory molecule of the tumour necrosis factor receptor superfamily (TNFRSF) that is expressed by activated T cells. CD137/CD137 ligand (CD137L) signalling primarily induces a potent cell-mediated immune response, while signalling of cell surface-expressed CD137L into antigen presenting cells enhances their activation, differentiation and migratory capacity. Studies have shown that bidirectional CD137/CD137L signalling plays an important role in the pathogenesis of autoimmune diseases. This review discusses the mechanisms how CD137/CD137L signalling contributes to immune deviation of helper T cell pathways in various murine models, and the potential of developing immunotherapies targeting CD137/CD137L signalling for the treatment of autoimmune diseases.


Assuntos
Ligante 4-1BB/metabolismo , Doenças Autoimunes/tratamento farmacológico , Fatores Imunológicos/farmacologia , Transdução de Sinais/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ligante 4-1BB/antagonistas & inibidores , Animais , Doenças Autoimunes/imunologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Fatores Imunológicos/uso terapêutico , Camundongos , Terapia de Alvo Molecular/métodos , Transdução de Sinais/efeitos dos fármacos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores
10.
J Cell Physiol ; 234(11): 21076-21088, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31025383

RESUMO

Intracellular pathogens are subject to elimination by a cellular immune response, and were therefore under evolutionary pressure to develop mechanisms that allow them to inhibit especially this arm of immunity. CD137, a T cell costimulatory molecule, and its ligand, CD137 ligand (CD137L), which is expressed on antigen presenting cells (APC), are potent drivers of cellular cytotoxic immune responses. Here, we report that different viruses usurp a negative feedback mechanism for the CD137-CD137L system that weakens cellular immune responses. Latent membrane protein (LMP)-1 and Tax, oncogenes of Epstein-Barr virus (EBV), and human T-cell lymphotropic virus (HTLV)-1, respectively, induce the expression of CD137. CD137 is transferred by trogocytosis to CD137L-expressing APC, and the CD137-CD137L complex is internalized and degraded, resulting in a reduced CD137-mediated T cell costimulation and a weakened cellular immune response which may facilitate the escape of the virus from immune surveillance. These data identify the usurpation of a CD137-based negative feedback mechanism by intracellular pathogens that enables them to reduce T cell costimulation.


Assuntos
Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Evasão Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Infecções Tumorais por Vírus/imunologia , Ligante 4-1BB/imunologia , Ligante 4-1BB/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Cricetinae , Deltaretrovirus/imunologia , Deltaretrovirus/patogenicidade , Genes Virais , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Humanos , Camundongos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Virulência
11.
Mol Ther ; 22(4): 873-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24394296

RESUMO

The mammalian auditory epithelium (AE) cannot replace supporting cells and hair cells once they are lost. Therefore, sensorineural hearing loss associated with missing cells is permanent. This inability to regenerate critical cell types makes the AE a potential target for cell replacement therapies such as stem cell transplantation. Inserting stem cells into the AE of deaf ears is a complicated task due to the hostile, high potassium environment of the scala media in the cochlea, and the robust junctional complexes between cells in the AE that resist stem cell integration. Here, we evaluate whether temporarily reducing potassium levels in the scala media and disrupting the junctions in the AE make the cochlear environment more receptive and facilitate survival and integration of transplanted cells. We used sodium caprate to transiently disrupt the AE junctions, replaced endolymph with perilymph, and blocked stria vascularis pumps with furosemide. We determined that these three steps facilitated survival of HeLa cells in the scala media for at least 7 days and that some of the implanted cells formed a junctional contact with native AE cells. The data suggest that manipulation of the cochlear environment facilitates survival and integration of exogenously transplanted HeLa cells in the scala media.


Assuntos
Técnicas de Cultura de Células , Cóclea/patologia , Meios de Cultivo Condicionados , Transplante de Células-Tronco , Células-Tronco/citologia , Epitélio/patologia , Células Ciliadas Auditivas/patologia , Células HeLa , Humanos , Potássio/metabolismo , Estria Vascular/citologia
12.
Sensors (Basel) ; 14(11): 20602-19, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25365460

RESUMO

Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art.


Assuntos
DNA/genética , Testes Genéticos/instrumentação , Hibridização in Situ Fluorescente/instrumentação , Técnicas de Diagnóstico Molecular/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Semicondutores , Espectrometria de Fluorescência/instrumentação , DNA/análise , Desenho de Equipamento , Análise de Falha de Equipamento
13.
Methods Mol Biol ; 2841: 49-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115764

RESUMO

In this chapter, we predict the structure of the Arabidopsis receptor-homology-transmembrane-RING-H2 isoform 1 (RMR1) in complex with the C-terminal sorting determinant of cruciferin (CRU1) by AlphaFold2 using the ColabFold web interface and to perform molecular dynamics simulation to probe the dynamics of the predicted structures. Our results predict that the C-terminal carboxylate group of ctVSD of CRU1 is recognized by the conserved Arg89 of the cargo-binding loop of RMR1 and Arg468 of CRU1 by negative charge residues in the cargo-binding pocket of RMR1. The procedures described here are useful for modeling of other protein complexes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Simulação de Dinâmica Molecular , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Ligação Proteica , Software , Sítios de Ligação , Conformação Proteica
14.
Comput Biol Med ; 168: 107753, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039889

RESUMO

BACKGROUND: Trans-acting factors are of special importance in transcription regulation, which is a group of proteins that can directly or indirectly recognize or bind to the 8-12 bp core sequence of cis-acting elements and regulate the transcription efficiency of target genes. The progressive development in high-throughput chromatin capture technology (e.g., Hi-C) enables the identification of chromatin-interacting sequence groups where trans-acting DNA motif groups can be discovered. The problem difficulty lies in the combinatorial nature of DNA sequence pattern matching and its underlying sequence pattern search space. METHOD: Here, we propose to develop MotifHub for trans-acting DNA motif group discovery on grouped sequences. Specifically, the main approach is to develop probabilistic modeling for accommodating the stochastic nature of DNA motif patterns. RESULTS: Based on the modeling, we develop global sampling techniques based on EM and Gibbs sampling to address the global optimization challenge for model fitting with latent variables. The results reflect that our proposed approaches demonstrate promising performance with linear time complexities. CONCLUSION: MotifHub is a novel algorithm considering the identification of both DNA co-binding motif groups and trans-acting TFs. Our study paves the way for identifying hub TFs of stem cell development (OCT4 and SOX2) and determining potential therapeutic targets of prostate cancer (FOXA1 and MYC). To ensure scientific reproducibility and long-term impact, its matrix-algebra-optimized source code is released at http://bioinfo.cs.cityu.edu.hk/MotifHub.


Assuntos
Algoritmos , Software , Motivos de Nucleotídeos/genética , Reprodutibilidade dos Testes , Cromatina/genética
15.
Hear Res ; 431: 108740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36948126

RESUMO

To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.


Assuntos
Sistema da Linha Lateral , Mitocôndrias , Neurônios , Sistema da Linha Lateral/citologia , Sistema da Linha Lateral/fisiologia , Animais , Peixe-Zebra , Neurônios/citologia , Sistema Vestibular/citologia , Sistema Vestibular/fisiologia , Técnicas Biossensoriais
16.
Autophagy ; 19(5): 1406-1423, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130166

RESUMO

Macroautophagy/autophagy, an evolutionarily conserved degradative process essential for cell homeostasis and development in eukaryotes, involves autophagosome formation and fusion with a lysosome/vacuole. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play important roles in regulating autophagy in mammals and yeast, but relatively little is known about SNARE function in plant autophagy. Here we identified and characterized two Arabidopsis SNAREs, AT4G15780/VAMP724 and AT1G04760/VAMP726, involved in plant autophagy. Phenotypic analysis showed that mutants of VAMP724 and VAMP726 are sensitive to nutrient-starved conditions. Live-cell imaging on mutants of VAMP724 and VAMP726 expressing YFP-ATG8e showed the formation of abnormal autophagic structures outside the vacuoles and compromised autophagic flux. Further immunogold transmission electron microscopy and electron tomography (ET) analysis demonstrated a direct connection between the tubular autophagic structures and the endoplasmic reticulum (ER) in vamp724-1 vamp726-1 double mutants. Further transient co-expression, co-immunoprecipitation and double immunogold TEM analysis showed that ATG9 (autophagy related 9) interacts and colocalizes with VAMP724 and VAMP726 in ATG9-positive vesicles during autophagosome formation. Taken together, VAMP724 and VAMP726 regulate autophagosome formation likely working together with ATG9 in Arabidopsis.Abbreviations: ATG, autophagy related; BTH, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester; Conc A, concanamycin A; EM, electron microscopy; ER, endoplasmic reticulum; FRET, Förster/fluorescence resonance energy transfer; MS, Murashige and Skoog; MVB, multivesicular body; PAS, phagophore assembly site; PM, plasma membrane; PVC, prevacuolar compartment; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TEM, transmission electron microscopy; TGN, trans-Golgi network; WT, wild-type.


Assuntos
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Macroautofagia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Saccharomyces cerevisiae/metabolismo , Endossomos/metabolismo , Proteínas SNARE/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Nat Aging ; 3(10): 1219-1236, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735240

RESUMO

In Alzheimer's disease (AD), sensome receptor dysfunction impairs microglial danger-associated molecular pattern (DAMP) clearance and exacerbates disease pathology. Although extrinsic signals, including interleukin-33 (IL-33), can restore microglial DAMP clearance, it remains largely unclear how the sensome receptor is regulated and interacts with DAMP during phagocytic clearance. Here, we show that IL-33 induces VCAM1 in microglia, which promotes microglial chemotaxis toward amyloid-beta (Aß) plaque-associated ApoE, and leads to Aß clearance. We show that IL-33 stimulates a chemotactic state in microglia, characterized by Aß-directed migration. Functional screening identified that VCAM1 directs microglial Aß chemotaxis by sensing Aß plaque-associated ApoE. Moreover, we found that disrupting VCAM1-ApoE interaction abolishes microglial Aß chemotaxis, resulting in decreased microglial clearance of Aß. In patients with AD, higher cerebrospinal fluid levels of soluble VCAM1 were correlated with impaired microglial Aß chemotaxis. Together, our findings demonstrate that promoting VCAM1-ApoE-dependent microglial functions ameliorates AD pathology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Microglia/metabolismo , Interleucina-33/metabolismo , Quimiotaxia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo
18.
STAR Protoc ; 3(4): 101766, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36240058

RESUMO

In this protocol, we describe steps that utilize the optical clarity of the zebrafish larvae and the stereotyped motor neuron axon structure in the trunk to measure spontaneous or evoked motor neuron axon activity. This activity is detected with transgenic fluorescent indicators introduced into the larvae by zygotic injection. Fluorescent indicator intensity changes in the small neuromuscular junctions are quantified to measure the presynaptic calcium activity and consequent synaptic vesicle release. For complete details on the use and execution of this protocol, please refer to Mandal et al. (2020).


Assuntos
Neurônios Motores , Peixe-Zebra , Animais , Junção Neuromuscular/fisiologia , Axônios/fisiologia , Vesículas Sinápticas/fisiologia , Animais Geneticamente Modificados
19.
Nutrition ; 94: 111498, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34911007

RESUMO

OBJECTIVES: The aim of this study was to evaluate the quality of dietary assessment methods in randomized controlled trials focusing on individuals with type 2 diabetes (T2DM), and its impact on the favorability of conclusions. METHODS: MEDLINE, EMBASE, CINAHL, and CENTRAL were searched, from inception until September 2019 for RCTs of dietary interventions in individuals with T2DM. Investigators assessed risk of bias and quality of the dietary measurements using the Cochrane Risk of Bias Assessment Tool 2.0 and the redeveloped EURICA tool, respectively. Random-effects meta-analysis assessed mean changes in hemoglobin (Hb)A1c. The study was conducted in accordance with the Preferred Reporting in Systematic Reviews and Meta-analyses. PROSPERO registration number: CRD42019146471. RESULTS: Of 2552 records retrieved, 23 studies met the inclusion criteria. Two studies were rated as good, 6 as medium, and 15 as poor in the quality assessment of the dietary measurement tool. All eight studies with higher quality of dietary assessment were associated with favorable conclusions. Among the 15 studies with poor quality, 5 failed to draw favorable conclusions. Among studies that sought to produce a reduction in HbA1c, 3 of 6 with better dietary assessment quality produced a significant difference of -0.38% (-0.67% to -0.08%), and 4 of 12 of poorer quality produced a significant difference of -0.26% (-0.37% to -0.14%). CONCLUSIONS: The poor quality of dietary assessment in clinical trials casts uncertainty on the dietary outcomes and the validity of possible causal mechanisms. Attention to the accuracy and reliability of dietary assessment methods is indicated.


Assuntos
Diabetes Mellitus Tipo 2 , Hemoglobinas Glicadas , Humanos , Avaliação Nutricional , Ensaios Clínicos Controlados Aleatórios como Assunto , Reprodutibilidade dos Testes
20.
J Assoc Res Otolaryngol ; 23(6): 683-700, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36261670

RESUMO

The synthetic glucocorticoid dexamethasone is commonly used to treat inner ear disorders. Previous work in larval zebrafish has shown that dexamethasone treatment enhances hair cell regeneration, yet dexamethasone has also been shown to inhibit regeneration of peripheral nerves after lesion. We therefore used the zebrafish model to determine the impact of dexamethasone treatment on lateral-line hair cells and primary afferents. To explore dexamethasone in the context of regeneration, we used copper sulfate (CuSO4) to induce hair cell loss and retraction of nerve terminals, and then allowed animals to recover in dexamethasone for 48 h. Consistent with previous work, we observed significantly more regenerated hair cells in dexamethasone-treated larvae. Importantly, we found that the afferent processes beneath neuromasts also regenerated in the presence of dexamethasone and formed an appropriate number of synapses, indicating that innervation of hair cells was not inhibited by dexamethasone. In addition to regeneration, we also explored the effects of prolonged dexamethasone exposure on lateral-line homeostasis and function. Following dexamethasone treatment, we observed hyperpolarized mitochondrial membrane potentials (ΔΨm) in neuromast hair cells and supporting cells. Hair cells exposed to dexamethasone were also more vulnerable to neomycin-induced cell death. In response to a fluid-jet delivered saturating stimulus, calcium influx through hair cell mechanotransduction channels was significantly reduced, yet presynaptic calcium influx was unchanged. Cumulatively, these observations indicate that dexamethasone enhances hair cell regeneration in lateral-line neuromasts, yet also disrupts mitochondrial homeostasis, making hair cells more vulnerable to ototoxic insults and possibly impacting hair cell function.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Mecanotransdução Celular , Cálcio/metabolismo , Cálcio/farmacologia , Cabelo , Dexametasona/toxicidade , Dexametasona/metabolismo , Sistema da Linha Lateral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA