Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 204(4): e0059221, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35323048

RESUMO

The Gram-negative pathogen Pasteurella multocida is the causative agent of many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. One mechanism by which bacteria regulate transcript abundance and protein production is riboregulation, which involves the interaction of a small RNA (sRNA) with a target mRNA to alter transcript stability and/or translational efficiency. This interaction often requires stabilization by an RNA-binding protein such as ProQ or Hfq. In Escherichia coli and a small number of other species, ProQ has been shown to play a critical role in stabilizing sRNA-mRNA interactions and preferentially binds to the 3' stem-loop regions of the mRNA transcripts, characteristic of intrinsic transcriptional terminators. The aim of this study was to determine the role of ProQ in regulating P. multocida transcript abundance and identify the RNA targets to which it binds. We assessed differentially expressed transcripts in a proQ mutant and identified sites of direct ProQ-RNA interaction using in vivo UV-cross-linking and analysis of cDNA (CRAC). These analyses demonstrated that ProQ binds to, and stabilizes, ProQ-dependent sRNAs and transfer RNAs in P. multocida via adenosine-enriched, highly structured sequences. The binding of ProQ to two RNA molecules was characterized, and these analyses showed that ProQ bound within the coding sequence of the transcript PmVP161_1121, encoding an uncharacterized protein, and within the 3' region of the putative sRNA Prrc13. IMPORTANCE Regulation in P. multocida involving the RNA-binding protein Hfq is required for hyaluronic acid capsule production and virulence. This study further expands our understanding of riboregulation by examining the role of a second RNA-binding protein, ProQ, in transcript regulation and abundance in P. multocida.


Assuntos
Proteínas de Escherichia coli , Pasteurella multocida , Pequeno RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo
2.
J Biol Chem ; 293(23): 9006-9016, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29678883

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a significant human pathogen that colonizes humans and its reservoir host, cattle. Colonization requires the expression of a type 3 secretion (T3S) system that injects a mixture of effector proteins into host cells to promote bacterial attachment and disease progression. The T3S system is tightly regulated by a complex network of transcriptional and post-transcriptional regulators. Using transposon mutagenesis, here we identified the ybeZYX-Int operon as being required for normal T3S levels. Deletion analyses localized the regulation to the endoribonuclease YbeY, previously linked to 16S rRNA maturation and small RNA (sRNA) function. Loss of ybeY in EHEC had pleiotropic effects on EHEC cells, including reduced motility and growth and cold sensitivity. Using UV cross-linking and RNA-Seq (CRAC) analysis, we identified YbeY-binding sites throughout the transcriptome and discovered specific binding of YbeY to the "neck" and "beak" regions of 16S rRNA but identified no significant association of YbeY with sRNA, suggesting that YbeY modulates T3S by depleting mature ribosomes. In E. coli, translation is strongly linked to mRNA stabilization, and subinhibitory concentrations of the translation-initiation inhibitor kasugamycin provoked rapid degradation of a polycistronic mRNA encoding needle filament and needle tip proteins of the T3S system. We conclude that T3S is particularly sensitive to depletion of initiating ribosomes, explaining the inhibition of T3S in the ΔybeY strain. Accessory virulence transcripts may be preferentially degraded in cells with reduced translational capacity, potentially reflecting prioritization in protein production.


Assuntos
Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Metaloproteínas/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Humanos , Metaloproteínas/genética , Modelos Moleculares , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transcriptoma , Sistemas de Secreção Tipo III/genética
3.
J Bacteriol ; 199(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760851

RESUMO

The Cpx envelope stress response mediates adaptation to stresses that affect protein folding within the envelope of Gram-negative bacteria. Recent transcriptome analyses revealed that the Cpx response impacts genes that affect multiple cellular functions predominantly associated with the cytoplasmic membrane. In this study, we examined the connection between the Cpx response and the respiratory complexes NADH dehydrogenase I and cytochrome bo3 in enteropathogenic Escherichia coli We found that the Cpx response directly represses the transcription of the nuo and cyo operons and that Cpx-mediated repression of these complexes confers adaptation to stresses that compromise envelope integrity. Furthermore, we found that the activity of the aerobic electron transport chain is reduced in E. coli lacking a functional Cpx response despite no change in the transcription of either the nuo or the cyo operon. Finally, we show that expression of NADH dehydrogenase I and cytochrome bo3 contributes to basal Cpx pathway activity and that overproduction of individual subunits can influence pathway activation. Our results demonstrate that the Cpx response gauges and adjusts the expression, and possibly the function, of inner membrane protein complexes to enable adaptation to envelope stress.IMPORTANCE Bacterial stress responses allow microbes to survive environmental transitions and conditions, such as those encountered during infection and colonization, that would otherwise kill them. Enteric microbes that inhabit or infect the gut are exposed to a plethora of stresses, including changes in pH, nutrient composition, and the presence of other bacteria and toxic compounds. Bacteria detect and adapt to many of these conditions by using envelope stress responses that measure the presence of stressors in the outermost compartment of the bacterium by monitoring its physiology. The Cpx envelope stress response plays a role in antibiotic resistance and host colonization, and we have shown that it regulates many functions at the bacterial inner membrane. In this report, we describe a novel role for the Cpx response in sensing and controlling the expression of large, multiprotein respiratory complexes at the cytoplasmic membrane of Escherichia coli The significance of our research is that it will increase our understanding of how these stress responses are involved in antibiotic resistance and the mechanisms used by bacteria to colonize the gut.


Assuntos
Adaptação Fisiológica , Membrana Celular/fisiologia , Citocromos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli Enteropatogênica/fisiologia , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Estresse Fisiológico , Aerobiose , Grupo dos Citocromos b , Transporte de Elétrons , Óperon
4.
Nat Commun ; 13(1): 3558, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732665

RESUMO

Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA-RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA-RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA-mRNA interactions are recovered and we find that an mRNA encoding a long 3' untranslated region (UTR) (termed vigR 3'UTR) functions as a regulatory 'hub' within the RNA-RNA interaction network. We demonstrate that the vigR 3'UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA-mRNA base-pairing. Deletion of the vigR 3'UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3'UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Ribonuclease III , Resistência a Vancomicina , Regiões 3' não Traduzidas/genética , Antibacterianos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Vancomicina/farmacologia , Resistência a Vancomicina/genética
5.
J Bacteriol ; 193(9): 2149-57, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21317318

RESUMO

CpxP is a novel bacterial periplasmic protein with no homologues of known function. In gram-negative enteric bacteria, CpxP is thought to interact with the two-component sensor kinase, CpxA, to inhibit induction of the Cpx envelope stress response in the absence of protein misfolding. CpxP has also been shown to facilitate DegP-mediated proteolysis of misfolded proteins. Six mutations that negate the ability of CpxP to function as a signaling protein are localized in or near two conserved LTXXQ motifs that define a class of proteins with similarity to CpxP, Pfam PF07813. To gain insight into how these mutations might affect CpxP signaling and/or proteolytic adaptor functions, the crystal structure of CpxP from Escherichia coli was determined to 2.85-Å resolution. The structure revealed an antiparallel dimer of intertwined α-helices with a highly basic concave surface. Each protomer consists of a long, hooked and bent hairpin fold, with the conserved LTXXQ motifs forming two diverging turns at one end. Biochemical studies demonstrated that CpxP maintains a dimeric state but may undergo a slight structural adjustment in response to the inducing cue, alkaline pH. Three of the six previously characterized cpxP loss-of-function mutations, M59T, Q55P, and Q128H, likely result from a destabilization of the protein fold, whereas the R60Q, D61E, and D61V mutations may alter intermolecular interactions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Estresse Fisiológico/fisiologia , Motivos de Aminoácidos , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Transdução de Sinais
7.
Methods Mol Biol ; 966: 337-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23299745

RESUMO

We describe methods for screening the E. coliASKA overexpression library for clones that lead to altered expression of reporter genes. First, a promoter of interest is cloned upstream of either the lacZor luxCDABEgenes to yield reporter genes in which transcription is proportional to the levels of ß-galactosidase or luminescence produced by strains carrying the reporter. The ASKA library is then condensed into two 96-well plates resulting in mixed preparations of 12 plasmids in each well. The plasmids in each well are transformed into the reporter strain and transformants are screened for either altered ß-galactosidase or light production. The genes contained in ASKA clones that result in altered reporter gene expression are amplified and sequenced and the ASKA clone for the gene identified is retransformed into the parent reporter strain to confirm the effect. We have used screens like this one to look for new E. coligenes that, when over-expressed, result in the altered expression of promoters that are regulated by the envelope stress response. The identity of the clones can yield information about the nature of inducing cues and/or additional regulatory molecules. The techniques are broadly applicable to any microbial function of interest.


Assuntos
Escherichia coli/genética , Genes Bacterianos , Genes Reporter , Estresse Fisiológico , Sequência de Bases , Clonagem Molecular , Primers do DNA , Escherichia coli/fisiologia , Plasmídeos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA