Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2211903120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623180

RESUMO

Long-term data allow ecologists to assess trajectories of population abundance. Without this context, it is impossible to know whether a taxon is thriving or declining to extinction. For parasites of wildlife, there are few long-term data-a gap that creates an impediment to managing parasite biodiversity and infectious threats in a changing world. We produced a century-scale time series of metazoan parasite abundance and used it to test whether parasitism is changing in Puget Sound, United States, and, if so, why. We performed parasitological dissection of fluid-preserved specimens held in natural history collections for eight fish species collected between 1880 and 2019. We found that parasite taxa using three or more obligately required host species-a group that comprised 52% of the parasite taxa we detected-declined in abundance at a rate of 10.9% per decade, whereas no change in abundance was detected for parasites using one or two obligately required host species. We tested several potential mechanisms for the decline in 3+-host parasites and found that parasite abundance was negatively correlated with sea surface temperature, diminishing at a rate of 38% for every 1 °C increase. Although the temperature effect was strong, it did not explain all variability in parasite burden, suggesting that other factors may also have contributed to the long-term declines we observed. These data document one century of climate-associated parasite decline in Puget Sound-a massive loss of biodiversity, undetected until now.


Assuntos
Parasitos , Animais , Clima , Animais Selvagens , Biodiversidade , Peixes , Interações Hospedeiro-Parasita
2.
J Anim Ecol ; 92(2): 250-262, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35959636

RESUMO

Many disease ecologists and conservation biologists believe that the world is wormier than it used to be-that is, that parasites are increasing in abundance through time. This argument is intuitively appealing. Ecologists typically see parasitic infections, through their association with disease, as a negative endpoint, and are accustomed to attributing negative outcomes to human interference in the environment, so it slots neatly into our worldview that habitat destruction, biodiversity loss and climate change should have the collateral consequence of causing outbreaks of parasites. But surprisingly, the hypothesis that parasites are increasing in abundance through time remains entirely untested for the vast majority of wildlife parasite species. Historical data on parasites are nearly impossible to find, which leaves no baseline against which to compare contemporary parasite burdens. If we want to know whether the world is wormier than it used to be, there is only one major research avenue that will lead to an answer: parasitological examination of specimens preserved in natural history collections. Recent advances demonstrate that, for many specimen types, it is possible to extract reliable data on parasite presence and abundance. There are millions of suitable specimens that exist in collections around the world. When paired with contemporaneous environmental data, these parasitological data could even point to potential drivers of change in parasite abundance, including climate, pollution or host density change. We explain how to use preserved specimens to address pressing questions in parasite ecology, give a few key examples of how collections-based parasite ecology can resolve these questions, identify some pitfalls and workarounds, and suggest promising areas for research. Natural history specimens are 'parasite time capsules' that give ecologists the opportunity to test whether infectious disease is on the rise and to identify what forces might be driving these changes over time. This approach will facilitate major advances in a new sub-discipline: the historical ecology of parasitism.


Assuntos
Helmintos , Animais , Humanos , Ecologia , Ecossistema , Interações Hospedeiro-Parasita , Parasitologia/tendências , Helmintos/classificação , Helmintos/fisiologia , Helmintíase/epidemiologia , Helmintíase/parasitologia
3.
J Anim Ecol ; 91(5): 996-1009, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332535

RESUMO

Although parasites are ubiquitous in marine ecosystems, predicting the abundance of parasites present within marine ecosystems has proven challenging due to the unknown effects of multiple interacting environmental gradients and stressors. Furthermore, parasites often are considered as a uniform group within ecosystems despite their significant diversity. We aim to determine the potential importance of multiple predictors of parasite abundance in coral reef ecosystems, including reef area, island area, human population density, chlorophyll-a, host diversity, coral cover, host abundance and island isolation. Using a model selection approach within a database of more than 1,200 individual fish hosts and their parasites from 11 islands within the Pacific Line Islands archipelago, we reveal that geographic gradients, including island area and island isolation, emerged as the best predictors of parasite abundance. Life history moderated the relationship; parasites with complex life cycles increased in abundance with increasing island isolation, while parasites with direct life cycles decreased with increasing isolation. Direct life cycle parasites increased in abundance with increasing island area, although complex life cycle parasite abundance was not associated with island area. This novel analysis of a unique dataset indicates that parasite abundance in marine systems cannot be predicted precisely without accounting for the independent and interactive effects of each parasite's life history and environmental conditions.


Assuntos
Parasitos , Animais , Recifes de Corais , Ecossistema , Peixes/parasitologia , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida
4.
Proc Natl Acad Sci U S A ; 116(46): 23182-23191, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659025

RESUMO

Recently, the World Health Organization recognized that efforts to interrupt schistosomiasis transmission through mass drug administration have been ineffective in some regions; one of their new recommended strategies for global schistosomiasis control emphasizes targeting the freshwater snails that transmit schistosome parasites. We sought to identify robust indicators that would enable precision targeting of these snails. At the site of the world's largest recorded schistosomiasis epidemic-the Lower Senegal River Basin in Senegal-intensive sampling revealed positive relationships between intermediate host snails (abundance, density, and prevalence) and human urogenital schistosomiasis reinfection (prevalence and intensity in schoolchildren after drug administration). However, we also found that snail distributions were so patchy in space and time that obtaining useful data required effort that exceeds what is feasible in standard monitoring and control campaigns. Instead, we identified several environmental proxies that were more effective than snail variables for predicting human infection: the area covered by suitable snail habitat (i.e., floating, nonemergent vegetation), the percent cover by suitable snail habitat, and size of the water contact area. Unlike snail surveys, which require hundreds of person-hours per site to conduct, habitat coverage and site area can be quickly estimated with drone or satellite imagery. This, in turn, makes possible large-scale, high-resolution estimation of human urogenital schistosomiasis risk to support targeting of both mass drug administration and snail control efforts.


Assuntos
Bulinus , Vetores de Doenças , Ecossistema , Esquistossomose/transmissão , Animais , Humanos , Densidade Demográfica , Imagens de Satélites , Esquistossomose/epidemiologia , Senegal/epidemiologia , Análise Espacial
5.
Proc Biol Sci ; 288(1945): 20203036, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622132

RESUMO

The abundances of free-living species have changed dramatically in recent decades, but little is known about change in the abundance of parasitic species. We investigated whether populations of several parasites have shifted over time in two shore crab hosts, Hemigrapsus oregonensis and Hemigrapsus nudus, by comparing the prevalence and abundance of three parasite taxa in a historical dataset (1969-1970) to contemporary parasite abundance (2018-2020) for hosts collected from 11 intertidal sites located from Oregon, USA, to British Columbia, Canada. Our data suggest that the abundance of the parasitic isopod Portunion conformis has varied around a stable mean for the past 50 years. No change over time was observed for larval acanthocephalans. However, larval microphallid trematodes increased in prevalence over time among H. oregonensis hosts, from a mean of 8.4-61.8% between the historical and contemporary time points. The substantial increase in the prevalence of larval microphallid trematodes could be owing to increased abundances of their bird final hosts, increased production of parasite infective stages by snail intermediate hosts or both. Our study highlights the variability among parasite species in their temporal trajectories of change.


Assuntos
Braquiúros , Parasitos , Trematódeos , Animais , Colúmbia Britânica/epidemiologia , Interações Hospedeiro-Parasita , América do Norte , Oregon
6.
Glob Chang Biol ; 26(5): 2854-2866, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189441

RESUMO

The Anthropocene has brought substantial change to ocean ecosystems, but whether this age will bring more or less marine disease is unknown. In recent years, the accelerating tempo of epizootic and zoonotic disease events has made it seem as if disease is on the rise. Is this apparent increase in disease due to increased observation and sampling effort, or to an actual rise in the abundance of parasites and pathogens? We examined the literature to track long-term change in the abundance of two parasitic nematode genera with zoonotic potential: Anisakis spp. and Pseudoterranova spp. These anisakid nematodes cause the disease anisakidosis and are transmitted to humans in undercooked and raw marine seafood. A total of 123 papers published between 1967 and 2017 met our criteria for inclusion, from which we extracted 755 host-parasite-location-year combinations. Of these, 69.7% concerned Anisakis spp. and 30.3% focused on Pseudoterranova spp. Meta-regression revealed an increase in Anisakis spp. abundance (average number of worms/fish) over a 53 year period from 1962 to 2015 and no significant change in Pseudoterranova spp. abundance over a 37 year period from 1978 to 2015. Standardizing changes to the period of 1978-2015, so that results are comparable between genera, we detected a significant 283-fold increase in Anisakis spp. abundance and no change in the abundance of Pseudoterranova spp. This increase in Anisakis spp. abundance may have implications for human health, marine mammal health, and fisheries profitability.


Assuntos
Anisakis , Ascaridoidea , Animais , Ecossistema , Peixes , Humanos , Larva , Zoonoses
8.
Glob Chang Biol ; 24(8): 3666-3679, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29781155

RESUMO

Human impacts on ecosystems can decouple the fundamental ecological relationships that create patterns of diversity in free-living species. Despite the abundance, ubiquity, and ecological importance of parasites, it is unknown whether the same decoupling effects occur for parasitic species. We investigated the influence of fishing on the relationship between host diversity and parasite diversity for parasites of coral reef fishes on three fished and three unfished islands in the central equatorial Pacific. Fishing was associated with a shallowing of the positive host-diversity-parasite-diversity relationship. This occurred primarily through negative impacts of fishing on the presence of complex life-cycle parasites, which created a biologically impoverished parasite fauna of directly transmitted parasites resilient to changes in host biodiversity. Parasite diversity appears to be decoupled from host diversity by fishing impacts in this coral reef ecosystem, which suggests that such decoupling might also occur for parasites in other ecosystems affected by environmental change.


Assuntos
Recifes de Corais , Peixes/parasitologia , Parasitos/fisiologia , Animais , Biodiversidade , Mudança Climática , Interações Hospedeiro-Parasita , Humanos , Ilhas , Estágios do Ciclo de Vida
10.
Ecol Lett ; 19(7): 752-61, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27147106

RESUMO

Despite a century of research into the factors that generate and maintain biodiversity, we know remarkably little about the drivers of parasite diversity. To identify the mechanisms governing parasite diversity, we combined surveys of 8100 amphibian hosts with an outdoor experiment that tested theory developed for free-living species. Our analyses revealed that parasite diversity increased consistently with host diversity due to habitat (i.e. host) heterogeneity, with secondary contributions from parasite colonisation and host abundance. Results of the experiment, in which host diversity was manipulated while parasite colonisation and host abundance were fixed, further reinforced this conclusion. Finally, the coefficient of host diversity on parasite diversity increased with spatial grain, which was driven by differences in their species-area curves: while host richness quickly saturated, parasite richness continued to increase with neighbourhood size. These results offer mechanistic insights into drivers of parasite diversity and provide a hierarchical framework for multi-scale disease research.


Assuntos
Anfíbios/parasitologia , Biodiversidade , Ecossistema , Modelos Biológicos , Parasitos , Animais , Interações Hospedeiro-Parasita
11.
Ecology ; 96(5): 1383-98, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26236851

RESUMO

Variability in primary productivity and fishing pressure can shape the abundance, species composition, and diversity of marine life. Though parasites comprise nearly half of marine species, their responses to these important forces remain little explored. We quantified parasite assemblages at two spatial scales, across a gradient in productivity and fishing pressure that spans six coral islands of the Line Islands archipelago and within the largest Line Island, Kiritimati, which experiences a west-to-east gradient in fishing pressure and upwelling-driven productivity. In the across-islands data set, we found that increasing productivity was correlated with increased parasite abundance overall, but that the effects of productivity differed among parasite groups. Trophically transmitted parasites increased in abundance with increasing productivity, but directly transmitted parasites did not exhibit significant changes. This probably arises because productivity has stronger effects on the abundance of the planktonic crustaceans and herbivorous snails that serve as the intermediate hosts of trophically transmitted parasites than on the higher-trophic level fishes that are the sole hosts of directly transmitted parasites. We also found that specialist parasites increased in response to increasing productivity, while generalists did not, possibly because specialist parasites tend to be more strongly limited by host availability than are generalist parasites. After the effect of productivity was controlled for, fishing was correlated with decreases in the abundance of trophically transmitted parasites, while directly transmitted parasites appeared to track host density; we observed increases in the abundance of parasites using hosts that experienced fishing-driven compensatory increases in abundance. The within-island data set confirmed these patterns for the combined effects of productivity and fishing on parasite abundance, suggesting that our conclusions are robust across a span of spatial scales. Overall, these results indicate that there are strong and variable effects of anthropogenic and natural drivers on parasite abundance and taxonomic richness. These effects are likely to be mediated by parasite traits, particularly by parasite transmission strategies.


Assuntos
Ecossistema , Doenças dos Peixes/parasitologia , Pesqueiros , Peixes/parasitologia , Helmintos/classificação , Doenças Parasitárias em Animais/epidemiologia , Animais , Helmintos/fisiologia , Ilhas , Oceano Pacífico
12.
J Exp Biol ; 218(Pt 24): 3962-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26677260

RESUMO

Schistosomiasis - a parasitic disease that affects over 200 million people across the globe - is primarily transmitted between human definitive hosts and snail intermediate hosts. To reduce schistosomiasis transmission, some have advocated disrupting the schistosome life cycle through biological control of snails, achieved by boosting the abundance of snails' natural predators. But little is known about the effect of parasitic infection on predator-prey interactions, especially in the case of schistosomiasis. Here, we present the results of laboratory experiments performed on Bulinus truncatus and Biomphalaria glabrata snails to investigate: (i) rates of predation on schistosome-infected versus uninfected snails by a sympatric native river prawn, Macrobrachium vollenhovenii, and (ii) differences in snail behavior (including movement, refuge-seeking and anti-predator behavior) between infected and uninfected snails. In predation trials, prawns showed a preference for consuming snails infected with schistosome larvae. In behavioral trials, infected snails moved less quickly and less often than uninfected snails, and were less likely to avoid predation by exiting the water or hiding under substrate. Although the mechanism by which the parasite alters snail behavior remains unknown, these results provide insight into the effects of parasitic infection on predator-prey dynamics and suggest that boosting natural rates of predation on snails may be a useful strategy for reducing transmission in schistosomiasis hotspots.


Assuntos
Biomphalaria/parasitologia , Bulinus/parasitologia , Palaemonidae/fisiologia , Schistosoma haematobium/fisiologia , Schistosoma mansoni/fisiologia , Animais , Agentes de Controle Biológico , Humanos , Larva , Comportamento Predatório , Esquistossomose/prevenção & controle , Esquistossomose/transmissão
13.
Front Ecol Environ ; 13(8): 425-434, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28077932

RESUMO

Parasites have historically been considered a scourge, deserving of annihilation. Although parasite eradications rank among humanity's greatest achievements, new research is shedding light on the collateral effects of parasite loss. Here, we explore a "world without parasites": a thought experiment for illuminating the ecological roles that parasites play in ecosystems. While there is robust evidence for the effects of parasites on host individuals (eg affecting host vital rates), this exercise highlights how little we know about the influence of parasites on communities and ecosystems (eg altering energy flow through food webs). We present hypotheses for novel, interesting, and general effects of parasites. These hypotheses are largely untested, and should be considered a springboard for future research. While many uncertainties exist, the available evidence suggests that a world without parasites would be very different from the world we know, with effects extending from host individuals to populations, communities, and even ecosystems.

14.
Parasitology ; 142(1): 134-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24598058

RESUMO

To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.


Assuntos
Doenças dos Peixes/parasitologia , Pesqueiros/métodos , Peixes/parasitologia , Estágios do Ciclo de Vida , Parasitos/crescimento & desenvolvimento , Doenças Parasitárias em Animais/parasitologia , Animais , Ecossistema , Interações Hospedeiro-Parasita , Parasitos/isolamento & purificação
15.
Ecology ; 95(7): 1929-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25163125

RESUMO

Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.


Assuntos
Biodiversidade , Doenças dos Peixes/parasitologia , Doenças Parasitárias em Animais/parasitologia , Animais , Pesqueiros , Peixes , Ilhas , Oceano Pacífico
16.
Ecology ; 95(4): 817-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24933803

RESUMO

Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.


Assuntos
Biodiversidade , Doenças Transmissíveis/genética , Predisposição Genética para Doença , Adaptação Biológica , Animais , Vetores de Doenças , Interações Hospedeiro-Patógeno , Humanos , Zoonoses
17.
Ecol Evol ; 14(4): e11043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576463

RESUMO

How has parasitism changed for Alaskan salmon over the past several decades? Parasitological assessments of salmon are inconsistent across time, and though parasite data are sometimes noted when processing fillets for the market, those data are not retained for more than a few years. The landscape of parasite risk is changing for salmon, and long-term data are needed to quantify this change. Parasitic nematodes of the family Anisakidae (anisakids) use salmonid fishes as intermediate or paratenic hosts in life cycles that terminate in marine mammal definitive hosts. Alaskan marine mammals have been protected since the 1970s, and as populations recover, the density of definitive hosts in this region has increased. To assess whether the anisakid burden has changed in salmonids over time, we used a novel data source: salmon that were caught, canned, and thermally processed for human consumption in Alaska, USA. We examined canned fillets of chum (Oncorhynchus keta, n = 42), coho (Oncorhynchus kisutch, n = 22), pink (Oncorhynchus gorbuscha, n = 62), and sockeye salmon (Oncorhynchus nerka, n = 52) processed between 1979 and 2019. We dissected each fillet and quantified the number of worms per gram of salmon tissue. Anisakid burden increased over time in chum and pink salmon, but there was no change in sockeye or coho salmon. This difference may be due to differences in the prey preferences of each species, or to differences in the parasite species detected across hosts. Canned fish serve as a window into the past, providing information that would otherwise be lost, including information on changes over time in the parasite burden of commercially, culturally, and ecologically important fish species.

18.
medRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826336

RESUMO

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3 °C and 23.6-27.9 °C (95 % CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.

19.
PLoS Negl Trop Dis ; 18(6): e0011836, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857289

RESUMO

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3°C and 23.6-27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.


Assuntos
Schistosoma haematobium , Schistosoma mansoni , Temperatura , Animais , Humanos , Schistosoma haematobium/fisiologia , Schistosoma mansoni/fisiologia , África Subsaariana/epidemiologia , Biomphalaria/parasitologia , Esquistossomose/transmissão , Esquistossomose/epidemiologia , Esquistossomose mansoni/transmissão , Esquistossomose mansoni/epidemiologia , Bulinus/parasitologia , Esquistossomose Urinária/transmissão , Esquistossomose Urinária/epidemiologia , Prevalência
20.
Ecol Lett ; 16(5): 656-63, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23448139

RESUMO

Many studies have suggested that ecosystem conservation protects human and wildlife populations against infectious disease. We tested this hypothesis using data on primates and their parasites. First, we tested for relationships between species' resilience to human disturbance and their parasite richness, prevalence and immune defences, but found no associations. We then conducted a meta-analysis of the effects of disturbance on parasite prevalence, which revealed no overall effect, but a positive effect for one of four types of parasites (indirectly transmitted parasites). Finally, we conducted intraspecific analyses of malaria prevalence as a function of mammalian species richness in chimpanzees and gorillas, and an interspecific analysis of geographic overlap and parasite species richness, finding that higher levels of host richness favoured greater parasite risk. These results suggest that anthropogenic effects on disease transmission are complex, and highlight the need to define the conditions under which environmental change will increase or decrease disease transmission.


Assuntos
Ecossistema , Doenças dos Primatas/parasitologia , Primatas/parasitologia , Animais , Biodiversidade , Helmintíase Animal/epidemiologia , Interações Hospedeiro-Parasita , Humanos , Malária/epidemiologia , Malária/transmissão , Malária/veterinária , Densidade Demográfica , Doenças dos Primatas/transmissão , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA