Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972209

RESUMO

CD36 and GNAT3 mediate taste responses, with CD36 acting as a lipid detector and GNAT3 acting as the α subunit of gustducin, a G protein governing sweet, savory, and bitter transduction. Strikingly, the genes encoding CD36 and GNAT3 are genomically superimposed, with CD36 completely encompassing GNAT3. To characterize genetic variation across the CD36-GNAT3 region, its implications for phenotypic diversity, and its recent evolution, we analyzed from ~2,500 worldwide subjects sequenced by the 1000 Genomes Project (1000GP). CD36-GNAT3 harbored extensive diversity including 8,688 single-nucleotide polymorphisms (SNPs), 414 indels, and other complex variants. Sliding window analyses revealed that nucleotide diversity and population differentiation across CD36-GNAT3 were consistent with genome-wide trends in the 1000GP (π = 0.10%, P = 0.64; FST = 9.0%, P = 0.57). In addition, functional predictions using SIFT and PolyPhen-2 identified 60 variants likely to alter protein function, and they were in weak linkage disequilibrium (r2 < 0.17), suggesting their effects are largely independent. However, the frequencies of predicted functional variants were low (P¯ = 0.0013), indicating their contributions to phenotypic variance on population scales are limited. Tests using Tajima's D statistic revealed that pressures from natural selection have been relaxed across most of CD36-GNAT3 during its recent history (0.39 < P < 0.67). However, CD36 exons showed signs of local adaptation consistent with prior reports (P < 0.035). Thus, CD36 and GNAT3 harbor numerous variants predicted to affect taste sensitivity, but most are rare and phenotypic variance on a population level is likely mediated by a small number of sites.


Assuntos
Seleção Genética , Paladar , Antígenos CD36 , Proteínas Heterotriméricas de Ligação ao GTP , Humanos , Polimorfismo de Nucleotídeo Único
2.
Chem Senses ; 43(7): 447-450, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29982450

RESUMO

Ability to perceive the bitter compound phenylthiocarbamide (PTC) is inherited via a dominant "taster" allele of the TAS2R38 gene, whereas inability is inherited via a recessive "non-taster" allele. This raises a question: Is the non-taster allele functionless, or does it mediate perception of compounds other than PTC? New evidence supports speculation that it is indeed functional. Associations between TAS2R38 mutations and bitter sensitivity to the tropical berry Antidesma bunius are the inverse of those PTC, suggesting that the non-taster allele enables perception to compounds in the fruit.


Assuntos
Feniltioureia , Paladar , Frutas , Haplótipos , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória
3.
PLoS Genet ; 11(9): e1005530, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26406243

RESUMO

The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects' genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes.


Assuntos
Estudos de Associação Genética , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória/genética , Alelos , Animais , Genótipo , Haplótipos , Humanos , Iridoides/química , Feniltioureia/química , Polimorfismo de Nucleotídeo Único , Quassinas/química , Quinina/química , Sesquiterpenos/química , Sesquiterpenos de Guaiano/química , Papilas Gustativas/metabolismo , População Branca
4.
Chem Senses ; 41(8): 649-59, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27340135

RESUMO

Bitter taste receptor genes (TAS2Rs) harbor extensive diversity, which is broadly distributed across human populations and strongly associated with taste response phenotypes. The majority of TAS2R variation is composed of single-nucleotide polymorphisms. However, 2 closely positioned loci at 12p13, TAS2R43 and -45, harbor high-frequency deletion (Δ) alleles in which genomic segments are absent, resulting in copy number variation (CNV). To resolve their chromosomal structure and organization, we generated maps using long-range contig alignments and local sequencing across the TAS2R43-45 region. These revealed that the deletion alleles (43Δ and 45Δ) are 37.8 and 32.2kb in length, respectively and span the complete coding region of each gene (~1kb) along with extensive up- and downstream flanking sequence, producing separate CNVs at the 2 loci. Comparisons with a chimpanzee genome, which contained intact homologs of TAS2R43, -45, and nearby TAS2Rs, indicated that the deletions evolved recently, through unequal recombination in a cluster of closely related loci. Population genetic analyses in 946 subjects from 52 worldwide populations revealed that copy number ranged from 0 to 2 at both TAS2R43 and TAS2R45, with 43Δ and 45Δ occurring at high global frequencies (0.33 and 0.18). Estimated recombination rates between the loci were low (ρ = 2.7×10(-4); r = 6.6×10(-9)) and linkage disequilibrium was high (D' = 1.0), consistent with their adjacent genomic positioning and recent origin. Geographic variation pointed to an African origin for the deletions. However, no signatures of natural selection were found in population structure or integrated haplotype scores spanning the region, suggesting that patterns of diversity at TAS2R43 and -45 are primarily due to genetic drift.


Assuntos
Variações do Número de Cópias de DNA/genética , Genética Populacional , Receptores Acoplados a Proteínas G/genética , Alelos , Sequência de Aminoácidos , Humanos , Alinhamento de Sequência , Paladar/genética , Percepção Gustatória/genética
5.
Hum Mol Genet ; 20(17): 3437-49, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21672920

RESUMO

Bitter taste perception is initiated by TAS2R receptors, which respond to agonists by triggering depolarization of taste bud cells. Mutations in TAS2Rs are known to affect taste phenotypes by altering receptor function. Evidence that TAS2Rs overlap in ligand specificity suggests that they may also contribute joint effects. To explore this aspect of gustation, we examined bitter perception of saccharin and acesulfame K, widely used artificial sweeteners with aversive aftertastes. Both substances are agonists of TAS2R31 and -43, which belong to a five-member subfamily (TAS2R30-46) responsive to a diverse constellation of compounds. We analyzed sequence variation and linkage structure in the ∼140 kb genomic region encoding TAS2R30-46, taste responses to the two sweeteners in subjects, and functional characteristics of receptor alleles. Whole-gene sequences from TAS2R30-46 in 60 Caucasian subjects revealed extensive diversity including 34 missense mutations, two nonsense mutations and high-frequency copy-number variants. Thirty markers, including non-synonymous variants in all five genes, were associated (P< 0.001) with responses to saccharin and acesulfame K. However, linkage disequilibrium (LD) in the region was high (D', r(2) > 0.95). Haplotype analyses revealed that most associations were spurious, arising from LD with variants in TAS2R31. In vitro assays confirmed the functional importance of four TAS2R31 mutations, which had independent effects on receptor response. The existence of high LD spanning functionally distinct TAS2R loci predicts that bitter taste responses to many compounds will be strongly correlated even when they are mediated by different genes. Integrative approaches combining phenotypic, genetic and functional analysis will be essential in dissecting these complex relationships.


Assuntos
Receptores Acoplados a Proteínas G/genética , Sacarina/farmacologia , Edulcorantes/farmacologia , Percepção Gustatória/genética , Paladar/genética , Adulto , Feminino , Genótipo , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Percepção Gustatória/efeitos dos fármacos , Adulto Jovem
6.
Chem Senses ; 38(6): 475-84, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23632915

RESUMO

Mutational polymorphism in the TAS2R38 bitter taste receptor is a key determinant of threshold taste detection of isolated compounds, such as phenylthiocarbamide (PTC) and propylthiouracil (PROP), as well as complex orosensation-mediated traits such as diet choice and smoking habits. These relationships are accounted for, in part, by 2 common alleles differing in functionality, TAS2R38-PAV and TAS2R38-AVI. However, TAS2R38 harbors extensive additional polymorphism whose functional significance remains unknown. To examine this variation, we ascertained genetic diversity in 56 Caucasian subjects via whole-gene sequencing, analyzed allele-specific responses to 5 TAS2R38 agonists (PTC, PROP, goitrin, methimazole, and sinigrin) using in vitro assays, and assessed genotypic associations with threshold detection phenotypes. Sequencing identified 3 single-nucleotide substitutions encoding 3 amino acid changes (C145G/P49A, C785T/A262V, and A886G/I296V), which combined to form 6 haplotypes in our sample. In vitro assays revealed a continuous range of response across alleles, and associations with threshold were significant for all single nucleotide polymorphisms (P < 0.002) and PAV/AVI haplotypes (P < 0.001). Haplotypes other than PAV and AVI did not exhibit phenotypic associations in our sample, possibly as a result of their low frequencies. However, prior studies have indicated that these alleles are common in some global regions, suggesting that alleles rare in our sample may be phenotypically relevant in other populations.


Assuntos
Variação Genética/genética , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Percepção Gustatória/genética , Adulto , Alelos , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Receptores Acoplados a Proteínas G/agonistas
7.
Nat Genet ; 36(11 Suppl): S28-33, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15508000

RESUMO

New genetic data has enabled scientists to re-examine the relationship between human genetic variation and 'race'. We review the results of genetic analyses that show that human genetic variation is geographically structured, in accord with historical patterns of gene flow and genetic drift. Analysis of many loci now yields reasonably accurate estimates of genetic similarity among individuals, rather than populations. Clustering of individuals is correlated with geographic origin or ancestry. These clusters are also correlated with some traditional concepts of race, but the correlations are imperfect because genetic variation tends to be distributed in a continuous, overlapping fashion among populations. Therefore, ancestry, or even race, may in some cases prove useful in the biomedical setting, but direct assessment of disease-related genetic variation will ultimately yield more accurate and beneficial information.


Assuntos
Variação Genética , Grupos Raciais/genética , Humanos
8.
Ann Hum Genet ; 76(2): 168-77, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22256951

RESUMO

There are four tests--the likelihood ratio (LR) test, Wald's test, the score test and the exact test--commonly employed in genetic association studies. On comparison of the four tests, we found that Wald's test, popular in genome-wide screens due to its low computational demands, exhibited a paradoxical behaviour in that the test statistic decreased as the effect size of the variant increased, resulting in a loss of power. The LR test always achieved the most significant P-values, followed by the exact test. We further examined the results in a real data set composed of high- and low-cholesterol subjects from the Dallas Heart Study (DHS). We also compared the single-variant LR test with two multi-variant analysis approaches--the burden test and the C-alpha test--in analysing the sequencing data by simulation. Our results call for caution in using Wald's test in genome-wide case-control association studies and suggest that the LR test is a better alternative in spite of its computational demands.


Assuntos
Estudos de Associação Genética/métodos , Doenças Raras/genética , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudos de Validação como Assunto
9.
BMC Med Genet ; 13: 96, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23050764

RESUMO

BACKGROUND: Balkan Endemic Nephropathy (BEN) is late-onset kidney disease thought to arise from chronic exposure to aristolochic acid, a phytotoxin that contaminates wheat supplies in rural areas of Eastern Europe. It has recently been demonstrated that humans are capable of perceiving aristolochic acid at concentrations below 40 nM as the result of high-affinity interactions with the TAS2R43 bitter taste receptor. Further, TAS2R43 harbors high-frequency loss-of-function mutations resulting in 50-fold variability in perception. This suggests that genetic variation in TAS2R43 might affect susceptibility to BEN, with individuals carrying functional forms of the receptor being protected by an ability to detect tainted foods. METHODS: To determine whether genetic variation in TAS2R43 predicts BEN susceptibility, we examined genotype-phenotype associations in a case-control study. A cohort of 88 affected and 99 control subjects from western Bulgaria were genotyped with respect to two key missense variants and a polymorphic whole-gene deletion of TAS2R43 (W35S, H212R, and wt/Δ), which are known to affect taste sensitivity to aristolochic acid. Tests for association between haplotypes and BEN status were then performed. RESULTS: Three major TAS2R43 haplotypes observed in previous studies (TAS2R43-W35/H212, -S35/R212 and -Δ) were present at high frequencies (0.17, 0.36, and 0.47 respectively) in our sample, and a significant association between genotype and BEN status was present (P = 0.020; odds ratio 1.18). However, contrary to expectation, BEN was positively associated with TAS2R43-W35/H212, a highly responsive allele previously shown to confer elevated bitter sensitivity to aristolochic acid, which should drive aversion but might also affect absorption, altering toxin activation. CONCLUSIONS: Our findings are at strong odds with the prediction that carriers of functional alleles of TAS2R43 are protected from BEN by an ability to detect and avoid aristolochic acid exposure. Evidence for a positive association between high-sensitivity alleles and BEN status suggests instead that possession of toxin-responsive receptor variants may paradoxically increase vulnerability, possibly by shifting attractive responses associated with low-intensity bitter sensations. The broad-spectrum tuning of the ~25-member TAS2R family as a whole toward xenobiotics points to a potentially far-reaching relevance of bitter responses to exposure-related disease in both individuals and populations.


Assuntos
Nefropatia dos Bálcãs/genética , Receptores Acoplados a Proteínas G/genética , Idoso , Alelos , Ácidos Aristolóquicos/química , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Deleção de Genes , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fenótipo , Polimorfismo de Nucleotídeo Único , Paladar/genética
10.
Front Genet ; 13: 952299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303543

RESUMO

Bitter taste receptors (TAS2Rs) are noted for their role in perception, and mounting evidence suggests that they mediate responses to compounds entering airways, gut, and other tissues. The importance of these roles suggests that TAS2Rs have been under pressure from natural selection. To determine the extent of variation in TAS2Rs on a global scale and its implications for human evolution and behavior, we analyzed patterns of diversity in the complete 25 gene repertoire of human TAS2Rs in ∼2,500 subjects representing worldwide populations. Across the TAS2R family as a whole, we observed 721 single nucleotide polymorphisms (SNPs) including 494 nonsynonymous SNPs along with 40 indels and gained and lost start and stop codons. In addition, computational predictions identified 169 variants particularly likely to affect receptor function, making them candidate sources of phenotypic variation. Diversity levels ranged widely among loci, with the number of segregating sites ranging from 17 to 41 with a mean of 32 among genes and per nucleotide heterozygosity (π) ranging from 0.02% to 0.36% with a mean of 0.12%. F ST ranged from 0.01 to 0.26 with a mean of 0.13, pointing to modest differentiation among populations. Comparisons of observed π and F ST values with their genome wide distributions revealed that most fell between the 5th and 95th percentiles and were thus consistent with expectations. Further, tests for natural selection using Tajima's D statistic revealed only two loci departing from expectations given D's genome wide distribution. These patterns are consistent with an overall relaxation of selective pressure on TAS2Rs in the course of recent human evolution.

12.
Evol Med Public Health ; 9(1): 431-447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154779

RESUMO

Bitter taste perception plays vital roles in animal behavior and fitness. By signaling the presence of toxins in foods, particularly noxious defense compounds found in plants, it enables animals to avoid exposure. In vertebrates, bitter perception is initiated by TAS2Rs, a family of G protein-coupled receptors expressed on the surface of taste buds. There, oriented toward the interior of the mouth, they monitor the contents of foods, drinks and other substances as they are ingested. When bitter compounds are encountered, TAS2Rs respond by triggering neural pathways leading to sensation. The importance of this role placed TAS2Rs under selective pressures in the course of their evolution, leaving signatures in patterns of gene gain and loss, sequence polymorphism, and population structure consistent with vertebrates' diverse feeding ecologies. The protective value of bitter taste is reduced in modern humans because contemporary food supplies are safe and abundant. However, this is not always the case. Some crops, particularly in the developing world, retain surprisingly high toxicity and bitterness remains an important measure of safety. Bitter perception also shapes health through its influence on preference driven behaviors such as diet choice, alcohol intake and tobacco use. Further, allelic variation in TAS2Rs is extensive, leading to individual differences in taste sensitivity that drive these behaviors, shaping susceptibility to disease. Thus, bitter taste perception occupies a critical intersection between ancient evolutionary processes and modern human health.

13.
BMC Med Genet ; 7: 27, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16542438

RESUMO

BACKGROUND: The antizyme family is a group of small proteins that play a role in cell growth and division by regulating the biosynthesis of polyamines (putrescine, spermidine, spermine). Antizymes regulate polyamine levels primarily through binding ornithine decarboxylase (ODC), an enzyme key to polyamine production, and targeting ODC for destruction by the 26S proteosome. Ornithine decarboxylase antizyme 3 (OAZ3) is a testis-specific antizyme paralog and the only antizyme expressed in the mid to late stages of spermatogenesis. METHODS: To see if mutations in the OAZ3 gene are responsible for some cases of male infertility, we sequenced and evaluated the genomic DNA of 192 infertile men, 48 men of known paternity, and 34 African aborigines from the Mbuti tribe in the Democratic Republic of the Congo. The coding sequence of OAZ3 was further screened for polymorphisms by SSCP analysis in the infertile group and an additional 250 general population controls. Identified polymorphisms in the OAZ3 gene were further subjected to a haplotype analysis using PHASE 2.02 and Arlequin 2.0 software programs. RESULTS: A total of 23 polymorphisms were identified in the promoter, exons or intronic regions of OAZ3. The majority of these fell within a region of less than two kilobases. Two of the polymorphisms, -239 A/G in the promoter and 4280 C/T, a missense polymorphism in exon 5, may show evidence of association with male infertility. Haplotype analysis identified 15 different haplotypes, which can be separated into two divergent clusters. CONCLUSION: Mutations in the OAZ3 gene are not a common cause of male infertility. However, the presence of the two divergent haplotypes at high frequencies in all three of our subsamples (infertile, control, African) suggests that they have been maintained in the genome by balancing selection, which was supported by a test of Tajima's D statistic. Evidence for natural selection in this region implies that these haplotypes may be associated with a trait other than infertility. This trait may be related to another function of OAZ3 or a region in tight linkage disequilibrium to the gene.


Assuntos
Proteínas de Transporte/genética , Infertilidade Masculina/genética , Polimorfismo Genético , Seleção Genética , Sequência de Bases , Análise Mutacional de DNA , Evolução Molecular , Predisposição Genética para Doença , Haplótipos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Fenótipo , Reação em Cadeia da Polimerase , Alinhamento de Sequência
14.
Mol Hum Reprod ; 12(4): 257-62, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16687568

RESUMO

cAMP-responsive element modulator (CREM) is a key transcription factor in the differentiation of round spermatids into mature spermatozoa. During spermiogenesis, CREM is regulated in part by activator of CREM in the testis (ACT), which activates CREM in a phosphorylation-independent fashion. We hypothesized that the ACT gene, which is expressed exclusively in the testis, could be involved in male factor infertility in patients with idiopathic-impaired spermatogenesis. To test this hypothesis, we sequenced the coding regions and flanking intronic regions of the ACT gene in 96 azoo- or oligospermic patients and 69 fertile controls. A total of 12 single-nucleotide polymorphisms (SNPs) was identified, and four of them leading to amino acid substitutions. An association study was performed based on calculated haplotype frequencies, and statistically significant differences were found between the patient and control populations for some haplotypes. To help establish the evolutionary relationships between the haplotypes, the coding regions of both the chimpanzee and the gorilla ACT gene were sequenced and evaluated. To test whether the different haplotypes conferred a functional change to the ACT protein, a yeast two-hybrid assay was designed to test the interaction between the two most divergent ACT haplotypes and their known binding partners, CREM and KIF17b. We identified one ACT haplotype that had a 45% reduction in its interaction with CREM. Our results suggest that different haplotypes within the ACT gene may contribute to male factor subfertility.


Assuntos
Modulador de Elemento de Resposta do AMP Cíclico/genética , Haplótipos/genética , Infertilidade Masculina/genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Gorilla gorilla/genética , Humanos , Proteínas com Domínio LIM , Masculino , Pan troglodytes/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/citologia , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA