Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neuroinform ; 8: 36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795617

RESUMO

TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting.

2.
PLoS One ; 8(5): e64339, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691200

RESUMO

Low-dimensional attractive manifolds with flows prescribing the evolution of state variables are commonly used to capture the lawful behavior of behavioral and cognitive variables. Neural network dynamics underlie many of the mechanistic explanations of function and demonstrate the existence of such low-dimensional attractive manifolds. In this study, we focus on exploring the network mechanisms due to asymmetric couplings giving rise to the emergence of arbitrary flows in low dimensional spaces. Here we use a spiking neural network model, specifically the theta neuron model and simple synaptic dynamics, to show how a qualitatively identical set of basic behaviors arises from different combinations of couplings with broken symmetry, in fluctuations of both firing rate and spike timing. We further demonstrate how such network dynamics can be combined to create more complex processes. These results suggest that 1) asymmetric coupling is not always a variance to be averaged over, 2) different networks may produce the same dynamics by different dynamical routes and 3) complex dynamics may be formed by simpler dynamics through a combination of couplings.


Assuntos
Potenciais de Ação/fisiologia , Comportamento/fisiologia , Cognição/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Simulação por Computador , Humanos , Fatores de Tempo
3.
Front Neuroinform ; 7: 10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23781198

RESUMO

We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA