Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 459(7245): 437-41, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19404259

RESUMO

Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.


Assuntos
Biotecnologia/métodos , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Marcação de Genes/métodos , Genoma de Planta/genética , Zea mays/genética , Dedos de Zinco , Desoxirribonucleases/genética , Alimentos Geneticamente Modificados , Genes de Plantas/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Hereditariedade , Fosfatos de Inositol/metabolismo , Mutagênese Sítio-Dirigida/métodos , Plantas Geneticamente Modificadas , Recombinação Genética/genética , Reprodutibilidade dos Testes
2.
Pest Manag Sci ; 76(4): 1500-1512, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31677217

RESUMO

BACKGROUND: RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm (WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. RESULTS: Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0 maize events carrying rootworm Sec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25 in diet bioassays. CONCLUSION: We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25 , suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. © 2019 Society of Chemical Industry.


Assuntos
Zea mays , Animais , Besouros , Feminino , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Cadeia Dupla
3.
Insect Biochem Mol Biol ; 104: 20-29, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243801

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera, is the major agronomically important pest of maize in the US Corn Belt. To augment the repertoire of the available dsRNA-based traits that control rootworm, we explored a potentially haplolethal gene target, wings up A (wupA), which encodes Troponin I. Troponin I, a component of the Troponin-Tropomyosin complex, is an inhibitory protein involved in muscle contraction. In situ hybridization showed that feeding on wupA-targeted dsRNAs caused systemic transcript knockdown in D. v. virgifera larvae. The knockdown of wupA transcript, and by extension Troponin I protein, led to deterioration of the striated banding pattern in larval body muscle and decreased muscle integrity. Additionally, the loss of function of the circular muscles surrounding the alimentary system led to significant accumulation of food material in the hind gut, which is consistent with a loss of peristaltic motion of the alimentary canal. In this study, we demonstrate that wupA dsRNA is lethal in D. v. virgifera larvae when fed via artificial diet, with growth inhibition of up to 50% within two days of application. Further, wupA hairpins can be stably expressed and detected in maize. Maize expressing wupA hairpins exhibit robust root protection in greenhouse bioassays, with several maize transgene integration events showing root protection equivalent to commercial insecticidal protein-expressing maize.


Assuntos
Besouros , Raízes de Plantas/parasitologia , Interferência de RNA , Troponina I , Zea mays/parasitologia , Animais , Besouros/genética , Besouros/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Troponina I/antagonistas & inibidores , Troponina I/genética , Troponina I/metabolismo
4.
Sci Rep ; 8(1): 2061, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391456

RESUMO

RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests.


Assuntos
Inativação Gênica , Engenharia Genética/métodos , MicroRNAs/genética , Controle Biológico de Vetores/métodos , Transgenes , Tribolium/genética , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Tribolium/patogenicidade , Zea mays/genética , Zea mays/parasitologia
5.
Pest Manag Sci ; 72(9): 1652-63, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27218412

RESUMO

The western corn rootworm (WCR), Diabrotica virgifera virgifera, is the most important pest of corn in the US Corn Belt. Economic estimates indicate that costs of control and yield loss associated with WCR damage exceed $US 1 billion annually. Historically, corn rootworm management has been extremely difficult because of its ability to evolve resistance to both chemical insecticides and cultural control practices. Since 2003, the only novel commercialized developments in rootworm management have been transgenic plants expressing Bt insecticidal proteins. Four transgenic insecticidal proteins are currently registered for rootworm management, and field resistance to proteins from the Cry3 family highlights the importance of developing traits with new modes of action. One of the newest approaches for controlling rootworm pests involves RNA interference (RNAi). This review describes the current understanding of the RNAi mechanisms in WCR and the use of this technology for WCR management. Further, the review addresses ecological risk assessment of RNAi and insect resistance management of RNAi for corn rootworm. © 2016 Society of Chemical Industry.


Assuntos
Besouros , Controle Biológico de Vetores/métodos , Interferência de RNA , Animais , Besouros/genética , Besouros/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA