Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 631(8019): 199-206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898276

RESUMO

The vast majority of glycosidases characterized to date follow one of the variations of the 'Koshland' mechanisms1 to hydrolyse glycosidic bonds through substitution reactions. Here we describe a large-scale screen of a human gut microbiome metagenomic library using an assay that selectively identifies non-Koshland glycosidase activities2. Using this, we identify a cluster of enzymes with extremely broad substrate specificities and thoroughly characterize these, mechanistically and structurally. These enzymes not only break glycosidic linkages of both α and ß stereochemistry and multiple connectivities, but also cleave substrates that are not hydrolysed by standard glycosidases. These include thioglycosides, such as the glucosinolates from plants, and pseudoglycosidic bonds of pharmaceuticals such as acarbose. This is achieved through a distinct mechanism of hydrolysis that involves oxidation/reduction and elimination/hydration steps, each catalysed by enzyme modules that are in many cases interchangeable between organisms and substrate classes. Homologues of these enzymes occur in both Gram-positive and Gram-negative bacteria associated with the gut microbiome and other body parts, as well as other environments, such as soil and sea. Such alternative step-wise mechanisms appear to constitute largely unrecognized but abundant pathways for glycan degradation as part of the metabolism of carbohydrates in bacteria.


Assuntos
Bactérias , Microbioma Gastrointestinal , Glicosídeo Hidrolases , Polissacarídeos , Humanos , Acarbose/química , Acarbose/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biocatálise , Glucosinolatos/metabolismo , Glucosinolatos/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Hidrólise , Metagenoma , Oxirredução , Plantas/química , Polissacarídeos/metabolismo , Polissacarídeos/química , Água do Mar/microbiologia , Microbiologia do Solo , Especificidade por Substrato , Masculino
2.
Nature ; 613(7943): 375-382, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599987

RESUMO

Broad-spectrum ß-lactam antibiotic resistance in Staphylococcus aureus is a global healthcare burden1,2. In clinical strains, resistance is largely controlled by BlaR13, a receptor that senses ß-lactams through the acylation of its sensor domain, inducing transmembrane signalling and activation of the cytoplasmic-facing metalloprotease domain4. The metalloprotease domain has a role in BlaI derepression, inducing blaZ (ß-lactamase PC1) and mecA (ß-lactam-resistant cell-wall transpeptidase PBP2a) expression3-7. Here, overcoming hurdles in isolation, we show that BlaR1 cleaves BlaI directly, as necessary for inactivation, with no requirement for additional components as suggested previously8. Cryo-electron microscopy structures of BlaR1-the wild type and an autocleavage-deficient F284A mutant, with or without ß-lactam-reveal a domain-swapped dimer that we suggest is critical to the stabilization of the signalling loops within. BlaR1 undergoes spontaneous autocleavage in cis between Ser283 and Phe284 and we describe the catalytic mechanism and specificity underlying the self and BlaI cleavage. The structures suggest that allosteric signalling emanates from ß-lactam-induced exclusion of the prominent extracellular loop bound competitively in the sensor-domain active site, driving subsequent dynamic motions, including a shift in the sensor towards the membrane and accompanying changes in the zinc metalloprotease domain. We propose that this enhances the expulsion of autocleaved products from the active site, shifting the equilibrium to a state that is permissive of efficient BlaI cleavage. Collectively, this study provides a structure of a two-component signalling receptor that mediates action-in this case, antibiotic resistance-through the direct cleavage of a repressor.


Assuntos
Antibacterianos , Staphylococcus aureus , Resistência beta-Lactâmica , beta-Lactamas , Humanos , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamas/química , beta-Lactamas/farmacologia , Microscopia Crioeletrônica , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo
3.
Annu Rev Microbiol ; 77: 669-698, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713458

RESUMO

Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.


Assuntos
Flagelos , Sistemas de Secreção Tipo III , Microscopia Crioeletrônica , Transporte Biológico , Eucariotos
4.
J Immunol ; 211(6): 981-993, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37493438

RESUMO

Current vaccine efforts to combat SARS-CoV-2 are focused on the whole spike protein administered as mRNA, viral vector, or protein subunit. However, the SARS-CoV-2 receptor-binding domain (RBD) is the immunodominant portion of the spike protein, accounting for 90% of serum neutralizing activity. In this study, we constructed several versions of RBD and together with aluminum hydroxide or DDA (dimethyldioctadecylammonium bromide)/TDB (d-(+)-trehalose 6,6'-dibehenate) adjuvant evaluated immunogenicity in mice. We generated human angiotensin-converting enzyme 2 knock-in mice to evaluate vaccine efficacy in vivo following viral challenge. We found that 1) subdomain (SD)1 was essential for the RBD to elicit maximal immunogenicity; 2) RBDSD1 produced in mammalian HEK cells elicited better immunogenicity than did protein produced in insect or yeast cells; 3) RBDSD1 combined with the CD4 Th1 adjuvant DDA/TDB produced higher neutralizing Ab responses and stronger CD4 T cell responses than did aluminum hydroxide; 4) addition of monomeric human Fc receptor to RBDSD1 (RBDSD1Fc) significantly enhanced immunogenicity and neutralizing Ab titers; 5) the Beta version of RBDSD1Fc provided a broad range of cross-neutralization to multiple antigenic variants of concern, including Omicron; and 6) the Beta version of RBDSD1Fc with DDA/TDB provided complete protection against virus challenge in the knock-in mouse model. Thus, we have identified an optimized RBD-based subunit vaccine suitable for clinical trials.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2 , Vacinas contra COVID-19 , Hidróxido de Alumínio , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Anticorpos Antivirais , Anticorpos Neutralizantes , Mamíferos
5.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723038

RESUMO

The rise of antibiotic resistance calls for new therapeutics targeting resistance factors such as the New Delhi metallo-ß-lactamase 1 (NDM-1), a bacterial enzyme that degrades ß-lactam antibiotics. We present structure-guided computational methods for designing peptide macrocycles built from mixtures of l- and d-amino acids that are able to bind to and inhibit targets of therapeutic interest. Our methods explicitly consider the propensity of a peptide to favor a binding-competent conformation, which we found to predict rank order of experimentally observed IC50 values across seven designed NDM-1- inhibiting peptides. We were able to determine X-ray crystal structures of three of the designed inhibitors in complex with NDM-1, and in all three the conformation of the peptide is very close to the computationally designed model. In two of the three structures, the binding mode with NDM-1 is also very similar to the design model, while in the third, we observed an alternative binding mode likely arising from internal symmetry in the shape of the design combined with flexibility of the target. Although challenges remain in robustly predicting target backbone changes, binding mode, and the effects of mutations on binding affinity, our methods for designing ordered, binding-competent macrocycles should have broad applicability to a wide range of therapeutic targets.


Assuntos
Desenho de Fármacos , Modelos Moleculares , Peptídeos/química , Peptídeos/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , Sítios de Ligação , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Conformação Molecular , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
6.
J Virol ; 96(5): e0133021, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019716

RESUMO

All viruses must usurp host ribosomes for viral protein synthesis. Dicistroviruses utilize an intergenic region internal ribosome entry site (IGR IRES) to directly recruit ribosomes and mediate translation initiation from a non-AUG start codon. The IGR IRES adopts a three-pseudoknot structure that comprises a ribosome binding domain of pseudoknot II and III (PKII and PKIII), and a tRNA-like anticodon domain (PKI) connected via a short, one to three nucleotide hinge region. Recent cryo-EM structural analysis of the dicistrovirus Taura syndrome virus (TSV) IGR IRES bound to the ribosome suggests that the hinge region may facilitate translocation of the IRES from the ribosomal A to P site. In this study, we provide mechanistic and functional insights into the role of the hinge region in IGR IRES translation. Using the honeybee dicistrovirus, Israeli acute paralysis virus (IAPV), as a model, we demonstrate that mutations of the hinge region resulted in decreased IRES-dependent translation in vitro. Toeprinting primer extension analysis of mutant IRESs bound to purified ribosomes and in rabbit reticulocyte lysates showed defects in the initial ribosome positioning on the IRES. Finally, using a hybrid dicistrovirus clone, mutations in the hinge region of the IAPV IRES resulted in decreased viral yield. Our work reveals an unexpected role of the hinge region of the dicistrovirus IGR IRES coordinating the two independently folded domains of the IRES to properly position the ribosome to start translation. IMPORTANCE Viruses must use the host cell machinery to direct viral protein expression for productive infection. One such mechanism is an internal ribosome entry site that can directly recruit host cell machinery. In this study, we have identified a novel sequence in an IRES that provides insight into the mechanism of viral gene expression. Specifically, this novel sequence promotes viral IRES activity by directly guiding the host cell machinery to start gene expression at a specific site.


Assuntos
Dicistroviridae , Sítios Internos de Entrada Ribossomal , Viroses , Vírus , Animais , Dicistroviridae/genética , Dicistroviridae/metabolismo , Sítios Internos de Entrada Ribossomal/genética , Mutação , Biossíntese de Proteínas , Coelhos , Ribossomos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Viroses/metabolismo , Viroses/virologia , Vírus/genética
7.
J Chem Inf Model ; 63(7): 2158-2169, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36930801

RESUMO

The rapid global spread of the SARS-CoV-2 virus facilitated the development of novel direct-acting antiviral agents (DAAs). The papain-like protease (PLpro) has been proposed as one of the major SARS-CoV-2 targets for DAAs due to its dual role in processing viral proteins and facilitating the host's immune suppression. This dual role makes identifying small molecules that can effectively neutralize SARS-CoV-2 PLpro activity a high-priority task. However, PLpro drug discovery faces a significant challenge due to the high mobility and induced-fit effects in the protease's active site. Herein, we virtually screened the ZINC20 database with Deep Docking (DD) to identify prospective noncovalent PLpro binders and combined ultra-large consensus docking with two pharmacophore (ph4)-filtering strategies. The analysis of active compounds revealed their somewhat-limited diversity, likely attributed to the induced-fit nature of PLpro's active site in the crystal structures, and therefore, the use of rigid docking protocols poses inherited limitations. The top hits were assessed against recombinant viral proteins and live viruses, demonstrating desirable inhibitory activities. The best compound VPC-300195 (IC50: 15 µM) ranks among the top noncovalent PLpro inhibitors discovered through in silico methodologies. In the search for novel SARS-CoV-2 PLpro-specific chemotypes, the identified inhibitors could serve as diverse templates for the development of effective noncovalent PLpro inhibitors.


Assuntos
COVID-19 , Hepatite C Crônica , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Modelos Moleculares , Estudos Prospectivos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteínas Virais/química , Peptídeo Hidrolases
8.
Angew Chem Int Ed Engl ; 62(21): e202301258, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940280

RESUMO

Suitably configured allyl ethers of unsaturated cyclitols act as substrates of ß-glycosidases, reacting via allylic cation transition states. Incorporation of halogens at the vinylic position of these carbasugars, along with an activated leaving group, generates potent inactivators of ß-glycosidases. Enzymatic turnover of these halogenated cyclitols (F, Cl, Br) displayed a counter-intuitive trend wherein the most electronegative substituents yielded the most labile pseudo-glycosidic linkages. Structures of complexes with the Sulfolobus ß-glucosidase revealed similar enzyme-ligand interactions to those seen in complexes with a 2-fluorosugar inhibitor, the lone exception being displacement of tyrosine 322 from the active site by the halogen. Mutation of Y322 to Y322F largely abolished glycosidase activity, consistent with lost interactions at O5, but minimally affected (7-fold) rates of carbasugar hydrolysis, yielding a more selective enzyme for unsaturated cyclitol ether hydrolysis.


Assuntos
Ciclitóis , Ciclitóis/química , Glicosídeo Hidrolases/metabolismo , Glicosídeos , Domínio Catalítico , Inibidores Enzimáticos/farmacologia
9.
Glycobiology ; 32(2): 162-170, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34792586

RESUMO

Propionibacterium acnes, though generally considered part of the normal flora of human skin, is an opportunistic pathogen associated with acne vulgaris as well as other diseases, including endocarditis, endophthalmitis and prosthetic joint infections. Its virulence potential is also supported by knowledge gained from its sequenced genome. Indeed, a vaccine targeting a putative cell wall-anchored P. acnes sialidase has been shown to suppress cytotoxicity and pro-inflammatory cytokine release induced by the organism, and is proposed as an alternative treatment for P. acnes-associated diseases. Here, we report the crystal structures of the surface sialidase and its complex with the transition-state mimic Neu5Ac2en. Our structural and kinetic analyses, together with insight from a glycan array screen, which probes subtle specificities of the sialidase for α-2,3-sialosides, provide a basis for the structure-based design of novel small-molecule therapeutics against P. acnes infections.


Assuntos
Acne Vulgar , Propionibacterium acnes , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Humanos , Neuraminidase , Pele
10.
Inorg Chem ; 61(14): 5563-5571, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35347989

RESUMO

The interplay between the primary and secondary coordination spheres in biological metal sites plays an essential role in controlling their properties. Some of the clearest examples of this are from copper sites in blue and purple copper proteins. Many such proteins contain methionine (Met) in the primary coordination sphere as a weakly bound ligand to Cu. While the effects of replacing the coordinated Met are understood, less so is the importance of its second-sphere interactions. In this combined informatics and experimental study, we first present a bioinformatics investigation of the second-sphere environments in biological Met-Cu motifs. The most common interaction is between the Met-CH3 and the π-face of a phenylalanine (Phe) (81% of surveyed structures), tyrosine (Tyr) (11%), and tryptophan (Trp) (8%). In most cases, the Met-CH3 also forms a contact with a π-face of one of a Cu-ligating histidine-imidazole. Such interactions are widely distributed in different Cu proteins. Second, to explore the impact of the second-sphere interactions of Met, a series of artificial Pseudomonas aeruginosa azurin proteins were produced where the native Phe15 was replaced with Tyr or Trp. The proteins were characterized using optical and magnetic resonance spectroscopies, X-ray diffraction, electrochemistry, and an investigation of the time-resolved electron-transfer kinetics of photosensitizer-modified proteins. The influence of the Cu-Met-Aro interaction on azurin's physical properties is subtle, and the hallmarks of the azurin blue copper site are maintained. In the Phe15Trp variant, the mutation to Phe15 induces changes in Cu properties that are comparable to replacement of the weak Met ligand. The broader impacts of these widely distributed interactions are discussed.


Assuntos
Azurina , Azurina/química , Cobre/química , Ligantes , Metionina/química , Modelos Moleculares , Proteínas , Triptofano/química , Tirosina/química
11.
Proc Natl Acad Sci U S A ; 115(15): E3378-E3387, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581275

RESUMO

Mycobacterium tuberculosis (Mtb) grows on host-derived cholesterol during infection. IpdAB, found in all steroid-degrading bacteria and a determinant of pathogenicity, has been implicated in the hydrolysis of the last steroid ring. Phylogenetic analyses revealed that IpdAB orthologs form a clade of CoA transferases (CoTs). In a coupled assay with a thiolase, IpdAB transformed the cholesterol catabolite (R)-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA) and CoASH to 4-methyl-5-oxo-octanedioyl-CoA (MOODA-CoA) and acetyl-CoA with high specificity (kcat/Km = 5.8 ± 0.8 × 104 M-1⋅s-1). The structure of MOODA-CoA was consistent with IpdAB hydrolyzing COCHEA-CoA to a ß-keto-thioester, a thiolase substrate. Contrary to characterized CoTs, IpdAB exhibited no activity toward small CoA thioesters. Further, IpdAB lacks the catalytic glutamate residue that is conserved in the ß-subunit of characterized CoTs and a glutamyl-CoA intermediate was not trapped during turnover. By contrast, Glu105A, conserved in the α-subunit of IpdAB, was essential for catalysis. A crystal structure of the IpdAB·COCHEA-CoA complex, solved to 1.4 Å, revealed that Glu105A is positioned to act as a catalytic base. Upon titration with COCHEA-CoA, the E105AA variant accumulated a yellow-colored species (λmax = 310 nm; Kd = 0.4 ± 0.2 µM) typical of ß-keto enolates. In the presence of D2O, IpdAB catalyzed the deuteration of COCHEA-CoA adjacent to the hydroxylation site at rates consistent with kcat Based on these data and additional IpdAB variants, we propose a retro-Claisen condensation-like mechanism for the IpdAB-mediated hydrolysis of COCHEA-CoA. This study expands the range of known reactions catalyzed by the CoT superfamily and provides mechanistic insight into an important determinant of Mtb pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Hidrolases/metabolismo , Mycobacterium tuberculosis/enzimologia , Tuberculose/microbiologia , Fatores de Virulência/metabolismo , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Colesterol/química , Cristalografia por Raios X , Humanos , Hidrolases/química , Hidrolases/genética , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Filogenia , Tuberculose/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética
12.
J Chem Inf Model ; 60(5): 2430-2435, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32293878

RESUMO

Advances in cryo-EM single-particle analysis have resulted in the routine determination of molecular structures to resolutions rivalling X-ray crystallography. Determining a reconstruction to high resolution requires a homogeneous particle data set; heterogeneity in conformation, occupancy, or even symmetry-mismatched components within a protein complex can present a challenge in data processing and affect the achievable resolution. The bacterial type III secretion system, or injectisome, is a macromolecular nanomachine used by some Gram-negative bacteria to inject effector proteins into a eukaryotic host to aid bacterial survival. The core dual-membrane-spanning needle complex has been the focus of structural study for the last two decades; however, the varied and mismatched internal symmetries of the highly oligomeric constituent components have presented numerous challenges for cryo-EM single-particle data processing. Here we give an overview of the history of cryo-EM studies of the prototypical Salmonella SPI-1 needle complex and discuss the workflow we recently employed in the successful determination of the entire complex.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo III , Microscopia Crioeletrônica , Cristalografia por Raios X , Bactérias Gram-Negativas , Substâncias Macromoleculares
13.
Proc Natl Acad Sci U S A ; 114(34): E7073-E7081, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784753

RESUMO

Bacterial sporulation allows starving cells to differentiate into metabolically dormant spores that can survive extreme conditions. Following asymmetric division, the mother cell engulfs the forespore, surrounding it with two bilayer membranes. During the engulfment process, an essential channel, the so-called feeding tube apparatus, is thought to cross both membranes to create a direct conduit between the mother cell and the forespore. At least nine proteins are required to create this channel, including SpoIIQ and SpoIIIAA-AH. Here, we present the near-atomic resolution structure of one of these proteins, SpoIIIAG, determined by single-particle cryo-EM. A 3D reconstruction revealed that SpoIIIAG assembles into a large and stable 30-fold symmetric complex with a unique mushroom-like architecture. The complex is collectively composed of three distinctive circular structures: a 60-stranded vertical ß-barrel that forms a large inner channel encircled by two concentric rings, one ß-mediated and the other formed by repeats of a ring-building motif (RBM) common to the architecture of various dual membrane secretion systems of distinct function. Our near-atomic resolution structure clearly shows that SpoIIIAG exhibits a unique and dramatic adaptation of the RBM fold with a unique ß-triangle insertion that assembles into the prominent channel, the dimensions of which suggest the potential passage of large macromolecules between the mother cell and forespore during the feeding process. Indeed, mutation of residues located at key interfaces between monomers of this RBM resulted in severe defects both in vivo and in vitro, providing additional support for this unprecedented structure.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/ultraestrutura , Sequência de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
14.
PLoS Pathog ; 12(12): e1006067, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27973583

RESUMO

In recent years, there has been a growing interest in teichoic acids as targets for antibiotic drug design against major clinical pathogens such as Staphylococcus aureus, reflecting the disquieting increase in antibiotic resistance and the historical success of bacterial cell wall components as drug targets. It is now becoming clear that ß-O-GlcNAcylation of S. aureus wall teichoic acids plays a major role in both pathogenicity and antibiotic resistance. Here we present the first structure of S. aureus TarS, the enzyme responsible for polyribitol phosphate ß-O-GlcNAcylation. Using a divide and conquer strategy, we obtained crystal structures of various TarS constructs, mapping high resolution overlapping N-terminal and C-terminal structures onto a lower resolution full-length structure that resulted in a high resolution view of the entire enzyme. Using the N-terminal structure that encapsulates the catalytic domain, we furthermore captured several snapshots of TarS, including the native structure, the UDP-GlcNAc donor complex, and the UDP product complex. These structures along with structure-guided mutants allowed us to elucidate various catalytic features and identify key active site residues and catalytic loop rearrangements that provide a valuable platform for anti-MRSA drug design. We furthermore observed for the first time the presence of a trimerization domain composed of stacked carbohydrate binding modules, commonly observed in starch active enzymes, but adapted here for a poly sugar-phosphate glycosyltransferase.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Parede Celular , Cromatografia Líquida , Cristalografia por Raios X , Espectrometria de Massas , Resistência a Meticilina/fisiologia , Staphylococcus aureus Resistente à Meticilina/química , Estabilidade Proteica , Estrutura Quaternária de Proteína , Ácidos Teicoicos/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(35): 11048-53, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283394

RESUMO

Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Parede Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Clomifeno/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/metabolismo
16.
J Biol Chem ; 290(16): 10406-17, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25678709

RESUMO

The Gram-negative bacterium enteropathogenic Escherichia coli uses a syringe-like type III secretion system (T3SS) to inject virulence or "effector" proteins into the cytoplasm of host intestinal epithelial cells. To assemble, the T3SS must traverse both bacterial membranes, as well as the peptidoglycan layer. Peptidoglycan is made of repeating N-acetylmuramic acid and N-acetylglucosamine disaccharides cross-linked by pentapeptides to form a tight mesh barrier. Assembly of many macromolecular machines requires a dedicated peptidoglycan lytic enzyme (PG-lytic enzyme) to locally clear peptidoglycan. Here we have solved the first structure of a T3SS-associated PG-lytic enzyme, EtgA from enteropathogenic E. coli. Unexpectedly, the active site of EtgA has features in common with both lytic transglycosylases and hen egg white lysozyme. Most notably, the ß-hairpin region resembles that of lysozyme and contains an aspartate that aligns with lysozyme Asp-52 (a residue critical for catalysis), a conservation not observed in other previously characterized lytic transglycosylase families to which the conserved T3SS enzymes had been presumed to belong. Mutation of the EtgA catalytic glutamate, Glu-42, conserved across lytic transglycosylases and hen egg white lysozyme, and this differentiating aspartate diminishes type III secretion in vivo, supporting its essential role in clearing the peptidoglycan for T3SS assembly. Finally, we show that EtgA forms a 1:1 complex with the building block of the polymerized T3SS inner rod component, EscI, and that this interaction enhances PG-lytic activity of EtgA in vitro, collectively providing the necessary strict localization and regulation of the lytic activity to prevent overall cell lysis.


Assuntos
Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Glicosiltransferases/química , Peptidoglicano/química , Sequência de Aminoácidos , Sistemas de Secreção Bacterianos , Transporte Biológico , Membrana Celular/metabolismo , Parede Celular/metabolismo , Escherichia coli Enteropatogênica/enzimologia , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/química , Muramidase/genética , Muramidase/metabolismo , Mutação , Peptidoglicano/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Virulência
17.
J Biol Chem ; 289(37): 25523-36, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25049233

RESUMO

KshA is the oxygenase component of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase involved in the bacterial degradation of steroids. Consistent with its role in bile acid catabolism, KshA1 from Rhodococcus rhodochrous DSM43269 had the highest apparent specificity (kcat/Km) for steroids with an isopropyl side chain at C17, such as 3-oxo-23,24-bisnorcholesta-1,4-diene-22-oate (1,4-BNC). By contrast, the KshA5 homolog had the highest apparent specificity for substrates with no C17 side chain (kcat/Km >10(5) s(-1) M(-1) for 4-estrendione, 5α-androstandione, and testosterone). Unexpectedly, substrates such as 4-androstene-3,17-dione (ADD) and 4-BNC displayed strong substrate inhibition (Ki S ∼100 µM). By comparison, the cholesterol-degrading KshAMtb from Mycobacterium tuberculosis had the highest specificity for CoA-thioesterified substrates. These specificities are consistent with differences in the catabolism of cholesterol and bile acids, respectively, in actinobacteria. X-ray crystallographic structures of the KshAMtb·ADD, KshA1·1,4-BNC-CoA, KshA5·ADD, and KshA5·1,4-BNC-CoA complexes revealed that the enzymes have very similar steroid-binding pockets with the substrate's C17 oriented toward the active site opening. Comparisons suggest Tyr-245 and Phe-297 are determinants of KshA1 specificity. All enzymes have a flexible 16-residue "mouth loop," which in some structures completely occluded the substrate-binding pocket from the bulk solvent. Remarkably, the catalytic iron and α-helices harboring its ligands were displaced up to 4.4 Å in the KshA5·substrate complexes as compared with substrate-free KshA, suggesting that Rieske oxygenases may have a dynamic nature similar to cytochrome P450.


Assuntos
Proteínas de Bactérias/química , Colesterol/química , Oxigenases de Função Mista/química , Rhodococcus/enzimologia , Relação Estrutura-Atividade , Domínio Catalítico , Cristalografia por Raios X , Ligantes , Mycobacterium tuberculosis/enzimologia , Oxirredução , Especificidade por Substrato
18.
PLoS Pathog ; 9(4): e1003307, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23633951

RESUMO

The T3SS injectisome is a syringe-shaped macromolecular assembly found in pathogenic Gram-negative bacteria that allows for the direct delivery of virulence effectors into host cells. It is composed of a "basal body", a lock-nut structure spanning both bacterial membranes, and a "needle" that protrudes away from the bacterial surface. A hollow channel spans throughout the apparatus, permitting the translocation of effector proteins from the bacterial cytosol to the host plasma membrane. The basal body is composed largely of three membrane-embedded proteins that form oligomerized concentric rings. Here, we report the crystal structures of three domains of the prototypical Salmonella SPI-1 basal body, and use a new approach incorporating symmetric flexible backbone docking and EM data to produce a model for their oligomeric assembly. The obtained models, validated by biochemical and in vivo assays, reveal the molecular details of the interactions driving basal body assembly, and notably demonstrate a conserved oligomerization mechanism.


Assuntos
Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos , Membrana Celular/metabolismo , Proteínas de Membrana/química , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
19.
Sci Adv ; 10(9): eadj3864, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416829

RESUMO

Wall teichoic acid (WTA), a covalent adduct of Gram-positive bacterial cell wall peptidoglycan, contributes directly to virulence and antibiotic resistance in pathogenic species. Polymerization of the Staphylococcus aureus WTA ribitol-phosphate chain is catalyzed by TarL, a member of the largely uncharacterized TagF-like family of membrane-associated enzymes. We report the cryo-electron microscopy structure of TarL, showing a tetramer that forms an extensive membrane-binding platform of monotopic helices. TarL is composed of an amino-terminal immunoglobulin-like domain and a carboxyl-terminal glycosyltransferase-B domain for ribitol-phosphate polymerization. The active site of the latter is complexed to donor substrate cytidine diphosphate-ribitol, providing mechanistic insights into the catalyzed phosphotransfer reaction. Furthermore, the active site is surrounded by electropositive residues that serve to retain the lipid-linked acceptor for polymerization. Our data advance general insight into the architecture and membrane association of the still poorly characterized monotopic membrane protein class and present molecular details of ribitol-phosphate polymerization that may aid in the design of new antimicrobials.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Microscopia Crioeletrônica , Staphylococcus aureus Resistente à Meticilina/metabolismo , Virulência , Ribitol/metabolismo , Ácidos Teicoicos/análise , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Fosfatos/metabolismo , Resistência Microbiana a Medicamentos
20.
J Biol Chem ; 287(16): 13348-55, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22362774

RESUMO

SopB is a type III secreted Salmonella effector protein with phosphoinositide phosphatase activity and a distinct GTPase binding domain. The latter interacts with host Cdc42, an essential Rho GTPase that regulates critical events in eukaryotic cytoskeleton organization and membrane trafficking. Structural and biochemical analysis of the SopB GTPase binding domain in complex with Cdc42 shows for the first time that SopB structurally and functionally mimics a host guanine nucleotide dissociation inhibitor (GDI) by contacting key residues in the regulatory switch regions of Cdc42 and slowing Cdc42 nucleotide exchange.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Nucleotídeos/metabolismo , Salmonella enterica/enzimologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Calorimetria , Cristalografia por Raios X , Guanina/química , Guanina/metabolismo , Humanos , Leucina/química , Leucina/metabolismo , Mimetismo Molecular , Nucleotídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA