Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(27): e202401003, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38808693

RESUMO

The gasotransmitter hydrogen sulfide (H2S) is thought to be involved in the post-translational modification of cysteine residues to produce reactive persulfides. A persulfide-specific chemoselective proteomics approach with mammalian cells has identified a broad range of zinc finger (ZF) proteins as targets of persulfidation. Parallel studies with isolated ZFs show that persulfidation is mediated by ZnII, O2, and H2S, with intermediates involving oxygen- and sulfur-based radicals detected by mass spectrometry and optical spectroscopies. A small molecule ZnII complex exhibits analogous reactivity with H2S and O2, giving a persulfidated product. These data show that ZnII is not just a biological structural element, but also plays a critical role in mediating H2S-dependent persulfidation. ZF persulfidation appears to be a general post-translational modification and a possible conduit for H2S signaling. This work has implications for our understanding of H2S-mediated signaling and the regulation of ZFs in cellular physiology and development.


Assuntos
Sulfeto de Hidrogênio , Proteômica , Sulfetos , Dedos de Zinco , Zinco , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Zinco/química , Humanos , Sulfetos/química , Processamento de Proteína Pós-Traducional
2.
J Biol Inorg Chem ; 28(1): 85-100, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478265

RESUMO

Tristetraprolin (TTP) is a nonclassical CCCH zinc finger (ZF) that plays a crucial role in regulating inflammation. TTP regulates cytokine mRNAs by specific binding of its two conserved ZF domains (CysX8CysX5CysX3His) to adenylate-uridylate-rich sequences (AREs) at the 3'-untranslated region, leading to degradation of the RNA. Dysregulation of TTP in animal models has demonstrated several cytokine-related syndromes, including chronic inflammation and autoimmune disorders. Exposure to Pb(II), a prevalent environmental toxin, is known to contribute to similar pathologies, in part by disruption of and/or competition with cysteine-rich metalloproteins. TTP's role during stress as a ubiquitous translational regulator of cell signaling (and dysfunction), which may underpin various phenotypes of Pb(II) toxicity, highlights the importance of understanding the interaction between TTP and Pb(II). The impact of Pb(II) binding on TTP's fold and RNA-binding function was analyzed via UV-Vis spectroscopy, circular dichroism, X-ray absorption spectroscopy, nuclear magnetic resonance spectroscopy, and fluorescence anisotropy. A construct containing the two ZF domains of TTP (TTP-2D) bound to Pb(II) with nanomolar affinity and exhibited a different geometry and fold in comparison to Zn2-TTP-2D. Despite the altered secondary structure, Pb(II)-substituted TTP-2D bound a canonical ARE sequence more selectively than Zn2-TTP-2D. Taken together, these data suggest that Pb(II) may interfere with proper TTP regulation and hinder the cell's ability to respond to inflammation.


Assuntos
Chumbo , Tristetraprolina , Animais , Tristetraprolina/genética , Tristetraprolina/química , Tristetraprolina/metabolismo , Dedos de Zinco , RNA , Citocinas , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA